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ABSTRACT
Industrial intrusion detection promises to protect networked in-
dustrial control systems by monitoring them and raising an alarm
in case of suspicious behavior. Many monolithic intrusion detec-
tion systems are proposed in literature. These detectors are often
specialized and, thus, work particularly well on certain types of
attacks or monitor different parts of the system, e.g., the network
or the physical process. Combining multiple such systems promises
to leverage their joint strengths, allowing the detection of a wider
range of attacks due to their diverse specializations and reducing
false positives. We study this concept’s feasibility with initial results
of various methods to combine detectors.

1 MOTIVATION
Industrial Control Systems (ICSs) are increasingly connected to the
Internet, and thereby, they are exposed to sophisticated cyberat-
tacks [3]. Such attacks can cause severe damage [2], making ICSs a
valuable target, particularly for state-level actors, as the Ukrainian
Power Grid attack [7] prominently proved. Consequentially, there
is a strong demand to secure ICSs and protect critical infrastructure.

Industrial Intrusion Detection Systems (IIDSs) provide an addi-
tional layer of security by monitoring an ICS’s largely repetitive
physical processes and network communication patterns and no-
tifying the operators in case of a suspected attack. To this end,
state-based IIDSs monitor physical process parameters for manipu-
lations while network-based IIDSs detect anomalies in the system’s
network traffic, such as Denial of Service attacks [8, 17].

Existing work focuses on devising effective monolithic detectors,
which are often specialized and, thus, detect certain types of attacks
particularly well. Combining multiple such systems into an IIDS
ensemble could leverage their strengths and specializations to en-
able the detection of a wider range of attacks, reduce false positives
and improve the detection rate. While ensemble learning, such as
weighted voting, has been proposed in general [1, 4, 5, 10, 15, 18],
applying its methods and concepts to IIDSs remains unexplored.

2 ENSEMBLE LEARNING FOR IIDSS
In contrast to monolithic approaches, IIDS ensembles offer a multi-
tude of advantages. First, ensembles promise to avoid the lock-in
to a single approach and thereby reduce the risk of missing attacks
since a combination of IIDSs designed for different types of attacks
can complement each other. Next, fusing alerts from several sim-
ilar IIDSs may enhance their collective certainty, i.e., leading to
fewer false alarms [6], which is crucial since the majority of an
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Figure 1: An ensemble approach promises to combine the ca-
pabilities of different types of IIDSs, which allows the system
to detect a wider range of attacks or reduce false positives.
ICS’s traffic occurs under normal operation without the presence
of attacks. Furthermore, assembling an IIDS out of a wider variety
of monolithic classifiers could result in a system that is overall
more flexible, i.e., leveraging signatures to (re-)identify variations
of known attacks and anomaly detection to detect unknown ones.

In this work, we assess the feasibility of various ensembles meth-
ods, which we call combiners, to leverage the combined detection
capabilities of a multitude of IIDSs (cf. Fig. 1). We begin with a
collection of monolithic IIDSs from related work, which each emit
an independent prediction of whether the ICS is in a benign or
anomalous state. The combiner then takes the IIDSs’ outputs and is
in charge of deriving a final classification, e.g., by a majority vote.

3 PRELIMINARY EVALUATION
Given the promising properties of IIDS ensembles (cf. Sec. 2), we
aim to explore which combiners (i.e., ensemble methods) can bring
a real-world benefit to ICS security. To this end, we experiment with
different combiners (Sec. 3.1) and examine to which extent they
can hold up to the theoretically achievable performance (Sec. 3.2).

We apply seven machine learning-based classifiers proposed
in literature based on Random Forest (RF), Support Vector Ma-
chine (SVM), Bidirectional Long Short Term Memory (BLSTM) [9],
Decision Trees, Extra Trees (ET), Isolation Forest [16], and Naïve
Bayes [14], provided by the open-source IPAL framework [17], and
consider two datasets: a power system [12] and a gas pipeline [11].
We split each dataset into a train set for the classifiers (40 %), a sec-
ond train set for the combiner (40 %), and a test set for evaluation
(20 %). The combiner train set is needed as the IIDSs’ performance
on their train set is not indicative of their behavior on new data.

In the following, we compare various IIDS combiners against
the best monolithic IIDS for each dataset (Extra Trees for the power
system and Random Forest for the gas pipeline dataset).

3.1 Initial Combiner Results
We start with simple rules to combine multiple IIDSs: all (all IIDSs
must emit an alert), any (at least one IIDS emits an alert), and a
majority vote [18]. For the IIDSs and datasets under study, such
rules perform worse than the best individual classifier (cf. Tab. 1),
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Table 1: Exploring different combining methods reveals a
slight improvement on the gas pipeline dataset and a roughly
matching performance on the power system dataset. The
achievable improvement (upper bound) is, however,marginal
and limited by the classifier selection.

Classifier [%] Power System Dataset [12] Gas Pipeline Dataset [11]
Acc. F1 FPR Acc. F1 FPR

Best Individual 80.72 87.12 47.32 98.74 97.04 0.29

All −47.84 −76.68 −45.95 −20.46 −96.62 −0.29
Any −10.06 −4.32 +52.57 −08.18 −15.04 +11.44
Majority Vote −0.69 −0.34 +3.32 −0.60 −1.47 −0.11
Best Weighted Vote −0.52 +0.10 +9.68 +0.15 +0.37 +0.07
LR −0.17 −0.04 +1.65 +0.12 +0.31 +0.13
SVM −0.18 −0.13 +0.02 +0.17 +0.43 +0.20

Upper Bound +0.48 +0.22 −2.89 +0.21 +0.53 +0.20

but the majority vote falls behind by only 0.34%/1.47% in the F1
score on the power system and gas pipeline dataset. Yet, it improves
the FPR on the gas pipeline dataset by 0.11%. Unsurprisingly, the
all combiner achieves the lowest FPR of only 1.37 %/0.0 %, showing
that a tradeoff can be made between detection accuracy and FPR.

As an improvement to simple rules, we assign weights𝑤𝑖 to each
IIDS’s alerts and raise an alarm if the sum of weights surpasses a
threshold 𝑡 . We choose the weights on a best effort basis. For the
gas pipeline dataset,𝑤BLSTM = 𝑤ET = 1,𝑤RF = 2, 𝑡 = 2, and𝑤𝑐 = 0
for all other 𝑐 yielded the best performance. This configuration
outperforms the baseline by 0.37 % in the F1 score, only falling short
by 0.07% in FPR. On the power system dataset, 𝑤ET = 𝑤RF = 1,
𝑡 = 1, and 𝑤𝑐 = 0 for all other 𝑐 outperforms the baseline merely
by 0.1 % in the F1 score but falls short in accuracy and FPR.

While manually chosen weights may be sub-optimal, finding a
good combiner constitutes a machine learning problem. The goal is
to learn an optimal mapping between the base IIDSs’ outputs and
the expected classification result, also known as stacking [13]. To
this end, we leverage Logistic Regression (LR) and SVMs, which out-
perform the best individual classifier on the gas pipeline dataset in
terms of F1 score by 0.31 % and 0.43 % for LR and SVM, respectively.

In summary, we found that weighted voting can perform well
but requires manually chosen weights, while stacking yields similar
results without manual adjustments. Of all our tested combiners,
SVM performs best in terms of accuracy and F1 score. While the
results look promising on the gas pipeline dataset, the power system
dataset’s best classifier could not be surpassed by any of our tested
combiners, leaving us with the question of how big the available
headroom for improvement actually is.

3.2 A Practical Upper Bound
Consequently, we want to estimate an upper bound on the achiev-
able performance by any combiner. To this end, we leverage a
heuristic similar to the Behavior Knowledge Space Method [18]. It
creates a mapping to the expected label for each of the 27 = 128 pos-
sible output combinations of the seven IIDSs. The heuristic maps to
malicious if the majority of outputs during training are malicious
or benign otherwise. This approach guarantees the lowest possible
amount of misclassifications, thus maximizing accuracy.

From Tab. 1, we observe very little headroom in terms of accu-
racy compared to the best individual classifier on both datasets,
with 0.48% for the power system and 0.21% for the gas pipeline

dataset. On the latter, the SVM combiner leaves a gap of only 0.04 %.
Consequently, practical ensemble learning techniques can reach
nearly optimal combination performance, but they heavily rely on a
diverse set of input IIDS to substantially improve the performance.

4 CONCLUSION AND FUTUREWORK
IIDS ensembles promise to boost the detection performance and
combine the strengths of different approaches, e.g., state- and net-
work-based detectors. While showing that ensemble methods are
applicable in general, our first results are mixed, only marginally
improving upon the best individual classifier on the gas pipeline
dataset and roughly matching it on the power system dataset.

We assume that these results are mainly caused by a lacking di-
versity in our classifier selection, which consists only of state-based
supervised machine learning classifiers thus far. This assumption
is supported by our upper bound, which shows that the best im-
provement in accuracy is less than 0.5 % on both datasets. Integrat-
ing different types of classifiers, however, proves non-trivial. To
tackle this, we plan to independently evaluate ensemblemethods for
network-based IIDSs, which pose a different set of challenges, and
then integrate both types of IIDSs to unlock additional potential.

Another option to improve ensemble results, especially in am-
biguous cases, is providing the combiner with more data, e.g., by
utilizing the classifiers’ internal confidence values, which express
how confident the IIDS is in its prediction, in addition to their bi-
nary predictions. With a more diverse set of classifiers or in settings
without well-performing individual IIDSs, we believe that ensemble
learning can deliver on its promise to widen the range of detectable
attacks while reducing the number of false positives.
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