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ABSTRACT

Benchmarking the performance of companies is essential to identify
improvement potentials in various industries. Due to a competitive
environment, this process imposes strong privacy needs, as leaked
business secrets can have devastating effects on participating com-
panies. Consequently, related work proposes to protect sensitive
input data of companies using secure multi-party computation or
homomorphic encryption. However, related work so far does not
consider that also the benchmarking algorithm, used in today’s
applied real-world scenarios to compute all relevant statistics, itself
contains significant intellectual property, and thus needs to be pro-
tected. Addressing this issue, we present PCB — a practical design
for Privacy-preserving Company Benchmarking that utilizes ho-
momorphic encryption and a privacy proxy — which is specifically
tailored for realistic real-world applications in which we protect
companies’ sensitive input data and the valuable algorithms used
to compute underlying key performance indicators. We evaluate
PCB’s performance using synthetic measurements and showcase
its applicability alongside an actual company benchmarking per-
formed in the domain of injection molding, covering 48 distinct
key performance indicators calculated out of hundreds of different
input values. By protecting the privacy of all participants, we enable
them to fully profit from the benefits of company benchmarking.
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1 INTRODUCTION

The increasing digitization of industries within the Industrial Inter-
net of Things (IloT), the Internet of Production, or Industry 4.0 [35,
44, 60, 71, 83] lays the foundation for an increase in cooperation
and collaboration of companies for mutual benefits [25, 43, 69, 72].
One well-known and valuable form of industrial collaboration is
company benchmarking, where “similar” companies compare with
and learn from each other based on jointly collected performance
statistics with the goal to stay competitive in fast-changing mar-
kets [52, 93]. Traditionally, a third party, e.g., a non-profit institution
or industry association, would act as a single benchmarking opera-
tor and centrally collect input data from participating companies,
compute the relevant statistics on the input data, and provide the
comparison result back to the participating companies [33, 56, 80].

However, the input data provided by companies contains poten-
tially sensitive information, such as business secrets [13, 38]. As
this information might reveal critical information to competitors
or the benchmarking operator, companies nowadays are extremely
reserved w.r.t. participating in meaningful company benchmarking,
especially if data is stored in the cloud [16, 94]. Such concerns re-
garding unintentional data leakage, thus not only thwart individual
companies from benefiting from company benchmarking but also
negatively impact the overall utility of company benchmarking,
which commonly depends on a large number of participants [6].

To address these concerns, related work proposes different ap-
proaches to protect the sensitive input data of companies through se-
cure multi-party computation (SMC) [8, 52, 54, 86] or homomorphic
encryption (HE) [79]. More specifically, they privacy-preservingly
compare and process all participants’ inputs in secure round-based
protocols, returning the results to participating companies only.
Thus, related work indeed manages to sufficiently protect compa-
nies’ input data and redress their data leakage concerns.

However, to realize their approaches, related work assumes that
the task of deriving and computing relevant statistics based on
companies’ input data can be performed locally, which then al-
lows them to resort to securely realizing the actual comparison.
In real-world use cases, this assumption does not always hold:
Developing an insightful benchmarking algorithm is a costly and
time-consuming task [39, 57, 85, 87], and sharing the resulting al-
gorithm with participants might reveal the significant intellectual
property of the analyst who created and further refines the algo-
rithm. Consequently, to maintain her competitive advantage, the



analyst wants to keep her algorithm private [30, 63]. To securely
realize a real-world applicable company benchmarking, it is thus
necessary to cater to the confidentiality requirements of the partic-
ipating companies while also protecting the underlying algorithm
used to compute the statistics that form the basis of the benchmark.
In this paper, we propose PCB, a Privacy-preserving Company
Benchmarking design, which addresses the needs of both compa-
nies and the analyst. We introduce a novel, deployable concept
utilizing a privacy proxy that only operates on encrypted data us-
ing homomorphic encryption. The individual results are further
secured as the proxy only shares aggregates to offer non-sensitive
public statistics to participants. Consequently, both companies and
the analyst can participate in (and offer) company benchmarks
without fearing to lose valuable intellectual property and business
secrets. Thus, more companies can benefit from the advantages of
benchmarks, while the overall utility of these benchmarks increases
due to more advanced algorithms and a broader participant base.

Contributions. Our main contributions are as follows.

e We derive a set of generic challenges that are relevant for
real-world company benchmarking and emphasize the need
for algorithm confidentiality, a shortcoming in related work.

e We propose PCB, our privacy-preserving benchmarking de-
sign, that protects both the confidentiality of companies’
input data and the valuable algorithm(s) used to compute
the statistics that form the basis of today’s benchmarks.

e We first show the general performance of PCB based on
synthetic measurements. With PCB, we repeat a real-world
benchmark in the injection molding industry, where 48 indi-
vidual results are calculated based on 674 sensitive inputs,
each consisting of 45 inputs and 114 computation steps per
result on average. Our results (a runtime of 8.7 min per com-
pany and an average deviation of 0.16 % compared to a plain-
text calculation) underline PCB’ real-world applicability.

Organization. In Section 2, we detail our company benchmark-
ing scenario and elaborate on the resulting challenges of realizing
secure company benchmarking. Then, in Section 3, we discuss
related work and its shortcomings concerning algorithm confiden-
tiality, before we introduce our design of PCB, which provides algo-
rithm confidentiality, in Section 4. We evaluate its performance and
applicability in Section 5, before concluding the paper in Section 6.

2 SCENARIO

As a foundation for our work, we first introduce company bench-
marking to create a shared understanding (Section 2.1). Subse-
quently, in Section 2.2, we derive and highlight its open challenges.

2.1 Company Benchmarking

Benchmarking is a process of comparing different key aspects, such
as products, services, or practices [5, 62]. While an internal bench-
mark only takes place inside one single business, an external bench-
mark, in contrast, is a process comparing a company’s product,
services, or practices with competitors and/or business leaders [62].
Company benchmarking is a specific external benchmarking that
usually focuses on practices such as the company’s operations and
the management of the company or a department [62].
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Figure 1: Data for KPI xyz that is shared with a participant.

The main objectives of company benchmarking are to evaluate
the company’s current position on the market to identify the gap
between the company and a recognized leader in a specific category
as well as to improve the company’s local processes to close this
identified gap as much as possible. To compare products, services,
or practices, suitable key performance indicators (KPIs) are com-
puted [41, 47, 52, 97]. KPIs highlight the differences to the leader in
a quantitative manner, for example, relating to the handling of cus-
tomer complaints. Based on these results, participants can identify
areas where the gap to the “best in class” participant is signifi-
cant [89]. A specific example of a KPI that deals with the handling
of customer complaints is the response time to one complaint [96].

The individual performance for a single KPI might look like the
representation in Figure 1, where the “own” value (marked in blue)
is usually only available for the individual participant. Not only the
identification but also any directly derivable action to improve the
current status based on the specific benchmark result is a reason
to participate [5, 41, 62, 96]. Concerning our previous example, the
response time per complaint can be reduced by implementing a
standardized feedback system, as demonstrated by competitors.
Due to these benefits, companies are willing to pay for permission
to participate in company benchmarks [84]. These costs cover the
operational costs of the infrastructure and reward the analyst for
its effort to derive the KPIs that are used as part of the benchmark.

Figure 2 shows an external benchmark, including two main ac-
tors: a third-party analyst and participating companies. First, the
analyst develops a questionnaire, suitable KPIs, and algorithms to
compute those KPIs. The analyst shares the questionnaire with all
participants. In contrast, algorithms for computing the KPIs based
on the questionnaire are usually kept private by the analyst due
to their value and intellectual property [39]. Participants answer
the questionnaire and forward their data to the analyst, e.g., by
uploading it to a cloud. Most importantly, they do not have access
to raw data from other companies. Then, the KPIs are compared for
the benchmark, and, eventually, the results are shared with the par-
ticipants. One main concern for companies is that the questionnaire
may query sensitive data (e.g., machine utilization or manufacturing
costs) [50]. In this setting, the participants must trust the analyst to
keep their data private and restrict its use to the KPI computation.

In summary, while benchmarking is a process for comparing dif-
ferent key aspects, it also serves as the foundation to start specific
improvements on weak practices based on the benchmarking re-
sults [5]. In today’s established settings, an open issue concerns the
participants’ input data, which should remain private. Likewise, the
analyst’s algorithm must stay confidential. Based on these general
observations, we systematically derive existing (open) challenges
for realizing privacy-preserving company benchmarking.

2.2 Challenges for Company Benchmarking

While company benchmarking provides numerous and sought-after
benefits, its actual application in large-scale practical settings is
nowadays limited. This limited adoption results from a diverse set
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Figure 2: Multiple companies individually participate in a
commercial company benchmarking. An analyst provides
the needed algorithm to evaluate the customers’ input data.

of challenges faced when realizing company benchmarking in a
technical system that is real-world applicable, as we identify next.
C1: Company Privacy. Both the raw data required to calculate
KPIs and individual KPIs of companies have to be treated as po-
tential business secrets as they might reveal critical information to
competitors. Well aware of these risks, companies nowadays are
extremely reluctant to participate in centralized benchmarking sys-
tems that require access to data in plain text [43]. To address these
reservations, protecting the privacy of company data is imperative,
most importantly, by not transferring any potentially sensitive data
in the clear to third parties. Consequently, the possibility and will-
ingness of companies to participate in benchmarks will increase,
allowing not only these companies to individually profit from the
advantages of company benchmarking but also globally increasing
the quality of company benchmarks through a broader data basis.
C2: Complexity. Related work frequently assumes that company
benchmarking can be realized based on easily derivable statistics
such as an average (across all participants) of a single metric, e.g.,
the response time to customer complaints (cf. Section 2.1). However,
in real-world settings, complex and often hierarchical, i.e., nested,
computations are necessary to derive KPIs that enable a meaningful
comparison between different companies [68]. For example, in a
company benchmark performed in the domain of injection molding
(cf. Section 5.2), computing a KPI that expresses the overall effective-
ness of the manufacturing equipment (e.g., to analyze the impact
of different manufacturers and standards) requires 23 input values
and a total of 83 calculations consisting of addition/subtraction (23
times), multiplication (27), division (25), and computation of the
minimum (8). Consequently, to unleash the full potential of com-
pany benchmarking, such complex and hierarchical computations
of KPIs need to be performed in a privacy-preserving manner.

C3: Algorithm Confidentiality. A lot of effort, knowledge, and
thus costs must be invested by an analyst to create and potentially
maintain the complex algorithm required to calculate the KPIs un-
derlying an impactful and commercially attractive company bench-
marking [68]. Even for KPIs with seemingly simple calculations,
significant effort by the analyst might be needed upfront to de-
rive and compose these KPIs in a meaningful way. Consequently, a
benchmarking algorithm needs to be considered as the intellectual
property of the analyst who created it. Thus, to persuade analysts
to contribute their valuable benchmarking algorithms to a (privacy-
preserving) benchmarking service, they require assurance that their
intellectual property is sufficiently protected from competitors.
C4: Exactness. Since KPIs underlying company benchmarking can
involve complex hierarchical computations while comparison re-
sults might directly influence business decisions and the production

process, a high level of correctness of the performed calculations is
vital. Thus, any privacy-preserving building block should not signif-
icantly impair the correctness of the performed calculations. Most
importantly, this requirement forbids to distort or abstract values
intentionally to protect the participants’ privacy (cf. Section 3).
C5: Flexibility. The participation of as many companies as possible
is required to reach the full potential of company benchmarking [6].
Consequently, company benchmarking systems should be easy to
use for participating companies, i.e., require only limited setup
and no explicitly trained staff. Likewise, participating companies
should need to upload their contributed values only once, without
the requirement to (repeatedly) remain online during the whole
collection phase. Finally, to provide long-term usability, algorithms
should be updatable, including the possibility to introduce entirely
new functional building blocks, e.g., new mathematical operators.
This extensibility further includes the challenge of providing com-
panies with the possibility to update their contributed values, e.g., if
an updated algorithm requires additional values. Closely related to
flexibility, company benchmarking systems need to scale indepen-
dently of the number of participants as the utility of benchmarks
increases with every new participant [6], making it pivotal to easily
scale with the number of benchmarked companies in a single setup.
We believe that any technical system for real-world applicable
company benchmarking must carefully address these challenges to
ensure deployability and usability for large-scale practical scenarios,
while allowing as many participating companies as possible to
benefit from privately-computed benchmarking advantages.

3 RELATED WORK OF BENCHMARKING

The challenge of collecting data from different sources to com-
pute statistics, comparisons, or benchmarks has been studied from
different angles, mostly centering around differential privacy, se-
cure multi-party computation, and homomorphic encryption. In
a setting primarily involving private users, different approaches
tackle the challenge of securely crowdsourcing statistics from user
devices [14, 31], performing statistical queries over distributed
data [18, 19], or nudging users towards more privacy-conscious
behavior based on comparisons [98]. All these approaches have
in common that they are primarily concerned with protecting the
privacy of user data using differential privacy to carefully distort
aggregate statistics. While this focus is a reasonable trade-off when
considering private users, company benchmarking involves com-
plex and nested calculations of KPIs (C2) and demands a high level
of correctness (C4), contradicting the design goals of differential
privacy, which mainly concentrates on hiding the data’s origin.
Focusing more on the requirements for company benchmarking,
different approaches, especially work by Kerschbaum [51, 52, 54],
look into the collection of KPIs. While these approaches are mainly
concerned with returning the average, variance, and maximum
among others for each KPI (we deem the average, maximum, and
minimum relevant; cf. Figure 1), other related work also considers
the regression of data series [6] or the calculation of quantiles [79].
In the following, we present relevant approaches grouped by
their chosen concept and provide an overview of the respective
categories and how they address the challenges we identified for
real-world company benchmarking (cf. Section 2.2) in Table 1.



Table 1: A comparison of different benchmarking designs.
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Client Computation. One main challenge in our work is the
complexity of calculating KPIs from nested formulas (C2). To the
best of our knowledge, only Damgard et al. [26] consider a complex
benchmarking model. However, their SMC-based design with two
servers is more related to database querying, i.e., not applicable.

A trivial approach would be to “offload” the initial computation
step, i.e., calculation of the KPIs, to the participating companies.
Then, any existing approach (presented in the following) could
conduct the comparison of their computed KPIs while preserving
the participants’ privacy. As today’s existing approaches fail to sup-
port the computation of complex benchmarking algorithms based
on participants’ input data, because they are tailored to compare
readily available KPIs, all KPIs must be derived beforehand. Un-
fortunately, this concept violates the analyst’s need for algorithm
confidentiality (C3) as all calculations are computed locally.

Central Server. To ease the participation for companies, most
related work relies on an architecture with a central server that
handles all communication and helps to maintain the anonymity
of participants. We further separated this approach into two sub-
categories according to their utilized concepts and building blocks.

Trusted Third Party (TTP). Computing and comparing all KPIs
based on plaintext data at a single server operated by the analyst
ensures exactness, flexibility, and algorithm confidentiality (even
though related work did not consider the analyst’s needs before). A
TTP-based approach further reduces the complexity to a minimum.
However, as stated in previous case studies [24, 33], the neglected
company privacy (C1) hinders its adoption, and we believe that a
TTP renders similar approaches infeasible for industry benchmarks.

Secure Multi-Party (SMC). SMC is a common concept to address
company privacy. However, existing approaches neglect the com-
plex KPI derivation as they usually do not consider any sensi-
tive computations with analyst-defined algorithms. In principle,
all SMC-based designs should be adaptable accordingly at addi-
tional communication costs. Unfortunately, traditional SMC con-
cepts leak the (confidential) algorithm [64], violating C3. In theory,
specifically-tailored approaches can address this limitation [64],
however, they have not been presented in the context of company
benchmarking so far. Most importantly, these designs are round-
based and require the continuous participation of all involved com-
panies. Thus, they do not satisfy the needed flexibility (C5). The
individual scalability depends on the design and is at best qua-
dratic [8, 54] in the number of participants for SMC-based concepts.

Such SMC-based benchmarking designs incorporate specific
protocols, such as calculating sums [28], division [6] (also one of

the first works in the area of privacy-preserving benchmarking),
the maximum [29], or the median [3]. Similarly, work to privacy-
preservingly compare values [27] or shuffle encrypted data [9] is
readily available for SMC-based benchmarking designs.

Catrina et al. [15] discuss the applicability of SMC in general
and argue for designs with multiple providers to preserve client
privacy as collusion with multiple providers is more unlikely.

Multiple Servers. To avoid redundancy, we exclude SMC-based
approaches with multiple servers from Table 1. In the area of
business surveys, Feigenbaum et al. [33] propose a protocol with
two servers to protect sensitive salary information. More recently,
PPBB [86] utilizes a proxy to encrypt client queries and returns
the results afterward. In this concept (without an implementation),
companies start the benchmarking process. Similarly, Herrmann et
al. [47] propose a design where companies initiate the benchmark.

A HE-based design [79] similar to PCB incorporates two servers
to certify sustainability metrics. In contrast to our design, their
computations are fully offloaded to both servers at the expense of
a limited set of supported calculations (C2). Furthermore, server
collusion poses the risk of leaking private inputs and processing
algorithms (C1 & C3). Next, we briefly classify our design PCB.

PCB. Our approach reduces the threats of collusion and thus im-
proves C1 as all inputs are encrypted with company-owned private
keys during the KPI calculations. PCB keeps the sensitive algorithm
private (C3) and can offload arbitrary functions to participants to
mitigate the limitations of homomorphic encryption (C2).

As a related research question, other work [47, 51, 54, 82] looks
into the influence and composition of peer groups on the privacy
of participants. We consider this line of research as orthogonal and
focus on the computation of KPIs without leaking the algorithm.
We leave the intersection of these questions for future work.

Research Gap. While a variety of conceptual approaches in
the area of company benchmarking exists, they all assume that
KPIs are readily available for (privacy-preserving) comparisons,
neglecting the process to derive them. However, such algorithms are
extremely valuable, and ensuring their confidentiality is, therefore,
a key concern of the analyst. Unfortunately, related work fails to
address this need by solely focusing on the participants’ privacy.

4 PCB: A PRIVACY-PRESERVING DESIGN

To extend related work with an approach that respects the need for
confidentiality of both the company’s sensitive data and the valu-
able algorithm (C3), we present our Privacy-preserving Company
Benchmarking (PCB). We first provide a high-level overview of
PCB’s design in Section 4.1. Subsequently, in Section 4.2, we provide
the technical background of our concept before detailing the indi-
vidual protocol steps in Section 4.3. Finally, we conclude our design
presentation with a discussion of PCB’s security in Section 4.4.

4.1 Design Overview

Related work mostly concentrates on protecting the data of the
participating companies. In contrast, our design additionally em-
phasizes the intellectual property of the analyst, i.e., we intend
to protect the effort required to derive meaningful KPIs for the
benchmarking of companies (cf. C3). To this end, we rely on an
architecture consisting of two non-colluding servers: Our so-called



privacy proxy is operated by the analyst and securely computes
the KPIs based on encrypted inputs provided by the participating
companies. The statistics server receives the computed results as
aggregates, processes them, and shares the statistics. An indepen-
dent entity, such as an industry association (e.g., VDMA [92]), can
operate this server, which is thus funded through membership fees.
In an honest-but-curious setting, PCB is secure by design: No
entity on its own can get access to any external initial inputs or inter-
mediate results of the KPI calculation, thus, maintaining company
privacy. We further discuss the (limited) implications of colluding
entities when considering a malicious attacker in Section 4.4.

Benchmarking with PCB. We illustrate our design in Figure 3
and detail its operation in the following. First, in Step (D, the analyst
uploads her algorithm to the privacy proxy (under her control). As a
result, she does not have to share the algorithm’s sensitive content
with any other entity. After a company registered itself by paying
the participation fee (to compensate the analyst for her efforts), i.e.,
expressed its intention to participate, it receives an encryption key
(for Step @) from the statistics server. Then, in Step (@), the proxy
requests all needed inputs for the KPI computation. Each participant
homomorphically encrypts all requested data with its own public
key and returns the corresponding ciphertexts in Step 3.

Based on these inputs, the benchmark computation is triggered.
We automatically disassemble the analysts’ algorithm into atomic
functions, consisting of simple calculations (i.e., addition, subtrac-
tion, or multiplication) or complex operations (e.g., square root, ...).
Then, the benchmark computation consists of two subprocesses:
@ Due to the used homomorphic encryption, the proxy can locally
compute simple calculations directly on the ciphertexts (cf. Sec-
tion 4.2). ® The proxy offloads complex operations, which cannot
be computed directly on the ciphertexts, to each participating com-
pany. The company decrypts the received ciphertexts (i.e., results
from its inputs and process @ at the privacy proxy) with its pri-
vate key, calculates the requested operation on the plaintext data,
and homomorphically re-encrypts the result, which it then returns
to the proxy. Computing sophisticated algorithms is an iterative
combination of both @ and @) until all KPIs are calculated.

This design ensures that only specific atomic functions are shared
with the companies while the complete algorithm and its structure
are kept entirely private. As we detail in Section 4.3.2, the proxy can
reduce the knowledge gain from atomic functions to a minimum
by obfuscating offloaded operations, e.g., using blinded ciphertexts.

Once all KPIs are computed according to the analyst’s algorithm,
the proxy returns the encrypted KPIs to the company, which de-
crypts them using its private key (also relevant for Step (©). Next,
the proxy instructs the participant to return these KPIs homomor-
phically encrypted using the statistics server’s public key. The proxy
then uses the received homomorphic ciphertexts to aggregate the
results of k companies to hide their individual KPIs while providing
the statistic server with the ability to compute the average.

In Step (@, the still encrypted aggregates are sent to the statis-
tics server, which decrypts them with its private key. Then, the
statistic server can compute the average for each KPI by dividing
the aggregate by k. Additionally, to identify the worst/best in class,
the proxy compares the homomorphically encrypted KPIs to iden-
tify the extrema of each KPI, i.e., minimum and maximum. After k
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participants, it also forwards these values to the statistics server to
enable it to update the range of each KPI after decryption if needed.
Finally, in Step (3, the statistics server returns each KPIs result,
i.e.,, average, maximum, and minimum, to the participant. In Step (©,
integrating its own KPI results (returned by the proxy), the company
assembles the presentation in Figure 1 for each KPI and analyzes
its own performance to take appropriate actions (cf. Section 2.1).
Afterward, the benchmark is concluded for this participant.

4.2 Technical Building Blocks of our Design

PCB relies on different well-established technical building blocks
with proven security guarantees. Before introducing individual
protocol steps in detail, we thus present all relevant building blocks.
Homomorphic Encryption. Homomorphic Encryption (HE)
allows for calculations on encrypted data without requiring access
to the underlying raw data, thus maintaining data confidential-
ity [2]. Conventional encryption schemes require to decrypt data
before any calculations can be executed. Even though the result
can be encrypted again, the entity which executes the calculations
requires access to the keys of the data owner. Thus, an offloading
of calculations is not possible without abandoning data privacy in
the traditional way. In contrast, HE allows the execution of mathe-
matical operations directly on encrypted data [2]. As encryption
remains intact during the whole process, HE is a privacy-preserving
approach for, e.g., outsourcing calculations to (untrusted) cloud
servers [74, 99]. Different variants of HE feature distinct implica-
tions on usability and performance, including Fully Homomorphic
Encryption (FHE) [34, 91] and Partially Homomorphic Encryption
(PHE) [37, 67, 77]. While FHE allows a larger set of operations, it
introduces computational overhead, additional storage needs, and
decreased accuracy [2]. PHE is limited in the allowed operations,
but implies fewer hardware requirements and performance loss [2].
In PCB, we realize calculations on company-encrypted data at the
analyst’s privacy proxy with FHE. Simultaneously, its supported
operations ease the challenge to protect the algorithm (C3).
k-Anonymity. Even if data is properly anonymized, i.e., all
identifiers have been stripped, unique values or value combinations
might still allow (external) entities to draw conclusions on the com-
pany contributing these values [90]. Likewise, side-channel infor-
mation such as timing information [73], i.e., at which point in time
a company submitted its KPIs, can aid in de-anonymizing participat-
ing companies. To prevent such inference attacks, k-anonymity [90]



is a concept to create an anonymity set of size k in which informa-
tion on individual KPIs is aggregated over at least k contributing
companies before it is released. In this way, singling out of individ-
ual inputs and re-identification is hindered. However, aggregating
data over multiple companies reduces the utility, as further analysis
now can only be performed on the aggregate, not individual values.

WebAssembly. To ease the deployability of approaches relying
on secure computations, such as HE [7], WebAssembly [40] offers a
binary code-based language that enables platform-independent exe-
cution of low-level code in web browsers. Code written in native lan-
guages, such as C or C++, can be compiled to WebAssembly, allow-
ing to conduct elaborate computations on the web efficiently [46]
while using standard libraries. For a simple deployment of PCB and
to remove potential obstacles in running software with challenging
to install dependencies (cf. C5), we also offer a client implemen-
tation in WebAssembly for participating companies. Thereby, we
relieve them of the burden of a complex software setup as they can
simply interact with the privacy proxy using any modern browser.

4.3 Different Steps of our PCB Protocol

With these technical building blocks in mind, we now detail the
different steps of PCB. To address the main challenges of company
benchmarking, i.e., to ensure both company privacy (C1) and al-
gorithm confidentiality (C3), the analyst-operated privacy proxy
computes results on encrypted company inputs only before sharing
aggregated KPIs of k participants with the statistics server.

A requirement for benchmarking (using PCB) is that partici-
pation may only be offered to authenticated companies for two
reasons. First, all company inputs must be attributed to the correct
participant to enable our iterative KPI computation. Second, com-
panies have to pay for the benchmarking, i.e., a mapping between
the payment and the participant is needed. Here, we rely on ex-
isting authentication approaches with digital signatures [36] and
public key infrastructure, i.e., certificate authorities [1]. However,
authentication in PCB is conceptually separated from the protocol.

We further assume that a suitable transport layer with integrity
protection, such as TLS [76], is in use. For clarity, we omit these
aspects in the upcoming presentation, which follows the steps that
we highlighted in our design overview in Figure 3. For a detailed
sequence diagram, containing all messages as well as an illustration
of the used encryption keys, we refer to Appendix A.1.

4.3.1 Preparing the Benchmark and Setting up PCB. Bootstrapping
a benchmarking campaign consists of two aspects. On the one
hand, the analyst must define a suitable setting for the benchmark.
This step includes that the analyst identifies meaningful KPIs and
derives their computation steps, i.e., to create an algorithm that
persuades the companies’ willingness to pay for their participation.
Furthermore, such an initial set of participants must be identified.
Otherwise, the value of the benchmark decreases (cf. C5) while
protecting the individual participant’s privacy is more challenging.
Finally, the analyst must identify a statistic server she can work
with, e.g., a server that is operated by an industry association.

On the other hand, the bootstrapping phase also concerns tech-
nical aspects. The analyst has to set up her privacy proxy, automati-
cally dissect her algorithm into atomic functions without altering it
in any way, and upload these operations to the proxy (cf. Step D).

Additionally, she has to fix the HE scheme’s context (e.g., the con-
figured polynomial modulus) for the communication with the par-
ticipants, i.e., to ensure that all participants encrypt their data with
the used scheme properties. Finally, she defines the aggregation
parameter k, which equals the batch size of participants before any
(encrypted) results are forwarded to the statistics server to protect
the companies’ individual KPIs. Besides, the statistic server should
generate a fresh FHE key pair for each new benchmarking setup.
To participate, each company generates its own FHE key pair
based on the defined HE context (to protect its data). They further
register at the statistics server to retrieve its public FHE key. This
key is later used when preparing the derived KPIs for aggregation.

4.3.2  KPI Computation Using Company Inputs. After this one-time
preparation phase, PCB’s main component is executed for each
company individually. Companies trigger it whenever they want to
participate and can also pause it independently if desired. Thus, our
design ensures flexibility (C5) for both participants and the analyst
as PCB is not a round-based protocol where all companies have
to participate simultaneously. Instead, the analyst can benchmark
interested companies, i.e., compute their KPIs, at any time.

With this iterative protocol, the KPIs of each company are inde-
pendently calculated. It concludes when all atomic functions have
been computed using the company’s inputs. Here, inputs refer to
private, sensitive information of the participants, which are used to
derive the KPIs (using the algorithm at the privacy proxy). To pro-
tect their inputs, companies encrypt all requested inputs with their
public FHE keys. Next, we detail the subsequent KPI computation.

Interplay. First, the proxy requests all required inputs to com-
pute the KPIs from the participating company (cf. Step (2)). The
company returns this data homomorphically encrypted (cf. Step ®).
The proxy then determines which atomics functions can be cal-
culated using these inputs at the moment, i.e., where all input
ciphertexts are available. Given that the KPI algorithm is nested
and consists of multiple layers, the proxy cannot compute all atomic
functions immediately as intermediate results are still missing.

Depending on the operation, the proxy either computes the
result locally directly on the homomorphic ciphertexts (cf. @), or
the proxy offloads such complex calculations to the company (cf. ®)
if FHE does not support a specific operation. With these new results,
the proxy checks for new atomic functions that can be computed.
This iterative interplay concludes once all operations are processed
(based on intermediate results), and the final KPIs are derived.

The offloading (®) works as follows. The company receives
the operand with all required (encrypted) inputs. These inputs can
also be a result of a local proxy computation (@). The company
then decrypts the inputs with its private FHE key, computes the
operation in plaintext, and re-encrypts the result with its public
FHE key. The company then returns this ciphertext to the proxy.

For performance and algorithm confidentiality, we rely on batch-
ing that (i) immediately requests all input values and (ii) simultane-
ously offloads as many atomic functions as currently possible. This
way, the overhead is minimized while drawing conclusions about
individual processing steps of the algorithm is hardened. We fur-
ther apply different algorithm obfuscation mechanisms in PCB to
protect the algorithm confidentiality despite the offloading of (tiny)
algorithm fragments. We detail these concepts in the following.



Algorithm Obfuscation. The algorithm is only available at
the analyst-operated privacy proxy to realize C3. However, the
offloading could leak tiny subsets of the algorithm, i.e., atomic
functions, or intermediate results to the participants. Based on
these algorithm fragments and the observed values, a malicious
company could try to reverse-engineer the underlying algorithm
that computes the KPIs. To minimize the information gain from
these observations, PCB implements three (independent) concepts.

Randomization. The privacy proxy randomizes the identifier of
an offloaded intermediate computation, i.e., a specific atomic func-
tion, its inputs ordering (if possible), and their ordering in a batch.
Thereby, the interaction patterns and observed identifiers differ for
each participant, challenging the algorithm’s reconstruction.

Dummy Requests. The proxy further adds (useless) dummy com-
putations to the offloaded calculations and initially also requests
unused input data to distort the company’s observations.

Blinding Calculations. If possible for an operand (cf. Section 5.2.2),
the privacy proxy obfuscates the offloaded calculation with blinds
added to its input values using HE before they are sent to the
participant. These blinds are later removed (with HE) from the
received intermediate result to obtain the intended computation.

With this supported obfuscation, our design addresses all needs
across various use cases. As the latter two measures introduce
overhead, especially if used excessively, the analyst must configure
them appropriately. She should keep her own (cloud) resources
as well as the number of participants and their resources in mind
while also taking the trade-off between added overhead and a pos-
sibly strengthened algorithm confidentiality into account. These
measures can even be flexibly adjusted within a single benchmark.

Computational Accuracy. The utilized homomorphic variant
(FHE vs. PHE) impacts our design. Due to its flexibility, we favor an
FHE scheme for PCB despite its increased computational complex-
ity, potential inaccuracies, and larger ciphertext sizes. Considering
the algorithm confidentiality (C3), FHE allows us to compute more
operations at the proxy (cf. Section 5.2.2). Furthermore, it simplifies
the obfuscation as blinding is easily implementable. Additionally,
for settings with strict confidentiality needs, the analyst can also
approximate complex (otherwise directly offloaded) functions, e.g.,
using FHE-supported operations, at the expense of sacrificing ac-
curacy. Hence, the analyst can configure the trade-off between
exactness (C4) and algorithm confidentiality (C3) as needed.

Theoretically, both HE variants could also be used simultane-
ously. However, when dissecting the algorithm, the analyst must
keep in mind that PHE and FHE ciphertexts are incompatible.

Flexibility. In line with C5, PCB’s offloading is a reasonable
design choice despite any potential confidentiality concerns as it
enables all types of complex computations. Thus, it provides a
significant benefit as it allows the derivation of meaningful KPIs,
improving the benchmark’s utility for companies, increasing the
number of participants, and thereby likely also the analyst’s income.

4.3.3  Aggregating KPIs of Multiple Participating Companies. Once
the KPIs of one participant have been computed, the results have to
be prepared to be forwarded to the statistics server. To this end, the
proxy returns the final company-encrypted KPI ciphertexts and asks
the company to encrypt them with the statistics server’s public FHE
key instead. Through this step, companies get access to their own

KPIs, which were only stored at the proxy before. Thereby, they can
later compare their performance to general (public) KPIs statistics,
which are available at the statistics server (cf. Section 4.3.4).

To establish a meaningful anonymity set, the proxy waits at
least until k participants returned their KPIs. The forwarding of
any results to the statistics server (cf. Step @) is then executed in
batches of at least k new participants. Using these HE-encrypted
ciphertexts, the proxy aggregates each of the KPIs individually
before sharing the aggregates with the statistic server. The proxy
further obliviously compares all ciphertexts to identify the extrema
for each KPI [21, 22]. These results are also shared with the statistics
server to allow for a range update, i.e., to set new minima or maxima.

Choice of k. Configuring the aggregation parameter k is a use
case-specific trade-off weighing company privacy, flexibility, and
the number of (expected) participants. On the one hand, a smaller
choice of k results in a smaller anonymity set of the participants,
potentially impairing their individual KPIs, i.e., their company pri-
vacy (C1). On the other hand, a large k increases the time until the
first results are available at the statistics server. Furthermore, the
computed KPIs might never be integrated into the statistics server
if fewer than k companies participated. This aspect is especially
relevant if the benchmark has been running for a longer period, and
only a few new companies still contribute their KPIs. The proxy
can also implement a buffer to release at least k contributions at
fixed intervals [45]. For flexibility, k can also be updated during the
regular operation of PCB. The analyst should then communicate the
consequences (cf. k-Anonymity in Section 4.2) to the participants.

4.3.4 Updating and Serving Available Benchmark Statistics. Upon
the first reception of aggregates (Step (@), the statistics server de-
crypts the ciphertexts using its FHE private key, computes the
average by dividing the aggregate by the number of participants
that contribute to this aggregate, and stores the resulting value for
each KPL During subsequent aggregates, the statistics server can
update this average as it is aware of the total number of participants.

Along with the aggregates, the statistics server also receives
the encrypted minimum and maximum for each KPIL. The server
decrypts them and updates the range of each KPI if needed. Upon
the reception of (subsequent) range updates, the statistics server
adjusts the respective range and discards the old extrema.

Once the aggregates are forwarded to the statistics server, the
proxy notifies the relevant companies. These participants then
query the statistics server for the general KPI statistics (cf. Step ®).
For each KPI, they receive the average, minimum, and maximum. Af-
terward, they merge this data with their own KPIs (cf. Section 4.3.2)
to obtain Figure 1 (cf. Step (©)). Finally, based on the benchmark’s
results, participants analyze the results, can identify shortcomings
(w.r.t. competitors), and derive actions to improve their status (cf.
Section 2.1), such as adapting their current processes, e.g., imple-
menting a standardized feedback system for customer complaints.

4.4 Security Discussion

Our design of PCB focuses on company privacy (C1) and algorithm
confidentiality (C3) alike. These aspects are essential to establish
a successful benchmarking service as it must be accepted by both
companies and their operators (most importantly, the analyst). As
stated in Section 2.1, the number of participants influences the



utility of a benchmark and simultaneously influences the analyst’s
profits. Consequently, we underline that PCB not only offers flexi-
bility and scalability (C5) but is secure and private as well.
Design Foundations. The overall design of PCB builds on the
KPI calculation using homomorphic ciphertexts. Thereby, the com-
panies do not have to share their potentially sensitive input data
with any third party, i.e., their private data is always protected
(C1). While the proxy can execute mathematical operations on the
HE ciphertexts, it cannot decrypt its contents. Furthermore, any
computed result is only forwarded to the statistics server after at
least k companies participated (cf. Section 4.3.3) to ensure that no
linking between a KPI and a company is possible for any entity.
Contrarily to related work, PCB satisfies the required algorithm
confidentiality (C3) because the proxy is operated by the analyst,
and thus the algorithm is never shared with any third party. It fur-
ther supports different flexible concepts to obfuscate any offloaded
computations. Alternatively, the analyst can also approximate sen-
sitive operations, if needed, at the expense of reduced accuracy.
Security Model. As the participants of PCB are registered com-
panies that operate under specific legal jurisdictions, we consider
them to being honest as misbehavior could be easily punished by
law, e.g., incur huge monetary fees. Besides, they have to pay for
their participation, discouraging impulsive or destructive actions.
Similarly, we consider the analyst and the operator of the statistics
server to be publicly-known entities who depend on their reputation
as they want to generate revenue by offering privacy-preserving
benchmarks. Therefore, we focus on an honest-but-curious attacker
model, which is also a common setting in related work [6, 8].
Submitting incorrect inputs is further disincentivized as this
behavior equals a loss of the participant’s investment as their com-
puted KPIs are skewed along with the general statistics (i.e., average,
minimum, and maximum). If the analyst fears that companies might
pay to deliberately render the insights of the benchmark useless or
phony for their competitors, she could dispatch an employee who
observes their behavior on-site, e.g., to conduct sanity checks on
the provided inputs or offloaded computations without extracting
any sensitive data from the company’s premises to ensure C1.
Entity Collusion. As stated in Section 4.1, PCB is secure by de-
sign. Despite our considered honest-but-curious attacker model, we
still want to briefly discuss the potential threats of entity collusion:
PCB only leaks specific details even when multiple entities collude.
The confidentiality of the algorithm is always ensured because only
the analyst and the proxy she operates gain access to it, i.e., an
analyst must deliberately leak it, which contradicts her own goal.
Analyst and Statistics Server. Even if these entities would collude,
they can only decrypt the computed KPI ciphertexts and link them
to the participants, i.e., they can remove the added privacy result-
ing from our aggregation of k participants. However, they cannot
reveal intermediate results as these ciphertexts are individually
encrypted with company-owned FHE keys. The security level of
FHE ciphertexts is usually estimated based on the learning with
errors (LWE) problem [4], and can be configured as needed [75].
In theory, a malicious analyst can define any input (even blinded)
as KPI and decrypt (and unblind) the received data if he colludes
with the statistics server. This fundamental problem exists for any
approach where (i) the analyst can freely define the algorithm and
(ii) the participants cannot judge the importance of an input for

the benchmark. However, our assumption of honest-but-curious at-
tackers is reasonable, especially given their public standing and the
associated consequences (loss of reputation and legal punishment).
A conceptual solution could be to execute an audited source code of
the privacy proxy in an enclave [61] in the cloud. Thereby, neither
the analyst nor the statistics server can access the individual KPI
ciphertexts before they are aggregated, i.e., ensuring k-anonymity.
Company and an Operator. A company and the statistics server’s
operator or the analyst cannot jointly compromise any secret data.
Multiple Companies. If at least k—1 companies collude, they can
potentially reconstruct the KPIs of the non-colluding company
based on the general KPI statistics, which are available at the statis-
tics server, and their own KPIs. However, this action is a punishable
offense as it clashes with cartel law [81]. Furthermore, such an
attack is unrealistic for benchmarks with many participants and
can easily be mitigated if the analyst configures a large k.
Algorithm Confidentiality. PCB protects the analyst’s algo-
rithm by design (C3). However, depending on the algorithm, the
proxy has to offload computations to the participants. As we detailed
in Section 4.3.2, our design features different obfuscation concepts
to reduce any information leaks when offloading operations. These
concepts can be configured according to use case-specific needs. In
general, an FHE scheme offers more opportunities for blinding and
reduces the operations that must be offloaded (cf. Section 5.2.2). Al-
ternatively, the analyst can also approximate calculations (e.g., with
local computations) to hide critical, potentially revealing functions
from the participants. For example, a non-linear function could be
linearly approximated as a tangent to only rely on FHE-supported
operations at the proxy. Thus, PCB is very flexible in ensuring C3.
Configuring k. The privacy of individual companies can be
improved by increasing k to increase the anonymity set, i.e., the
data of more companies is processed jointly without any option to
draw conclusions on the individual inputs (cf. Section 4.3.3). Given
that this need depends on the use case and should also consider the
number of participants, the exact choice must be set individually
for each benchmark. Thereby, we allow for flexible settings.
Company Privacy. To address C1, the proxy only receives ci-
phertexts to operate on without having access to any private keys
(of companies or statistics server), i.e., preventing all decryptions.
It forwards the encrypted KPIs in batches of at least k participants
to the statistics server, which cannot draw any conclusions on the
individual companies as it only obtains aggregates after decryption.
Overall, we observe that PCB satisfies the required security needs.
Even with entity collusion, only limited sensitive details are leaked
as the majority of company data is still protected. We further demon-
strate that due to PCB’s flexibility, most security guarantees can
even be further improved (e.g., adjusting k or the used algorithm ob-
fuscation), satisfying stronger, exceptional use case-specific needs.

5 PERFORMANCE EVALUATION

To assess the flexibility (C5) and exactness (C4) of PCB, we also
conducted a performance evaluation of our proposed design. First,
in Section 5.1, we investigate the impact of specific operations on
the performance of PCB. Second, in Section 5.2, we consider a real-
world use case in the domain of injection molding to highlight that
PCB is a practical solution for realistic benchmarking settings.



Implementation. We implement a prototype of PCB in Python.
For FHE, we rely on Microsoft SEAL [17] through a Python port [49].
For simplicity, we implement the extrema identification (minima
and maxima, cf. Figure 1) in the aggregation phase using order-
preserving encryption (OPE), i.e., we utilize pyope [66], which im-
plements Boldyreva’s OPE scheme [11]. Thus, companies must now
encrypt the final KPIs twice (with FHE and OPE, cf. Section 4.3.3).
The OPE ciphertexts then allow the proxy to identify the extrema
for each KPI in the current set of k participants. For undisputed
security, a HE-based comparison to identify the extrema per KPI
should be used in a real-world deployment [22] as OPE cipher-
texts leak details on the plaintexts by design [12, 55]. The privacy
proxy and statistics server both run Flask webservers [78] with
RESTful APIs. All data is persisted in SQLite databases [88]. We
base64-encode ciphertexts prior to their transfers in JSON objects.

5.1 General Performance

Before evaluating a real-world company benchmarking, we first
conduct synthetic measurements of PCB’s performance. In particu-
lar, we investigate the performance of specific atomic functions as
well as the impact of nested computations and other influences.

5.1.1  Experimental Setup. We simultaneously run all entities of our
design on a single commodity computer (Intel i5-2410M with 4 GB
RAM and a regular HDD) to underline its moderate resource needs.
The entities communicate over the loopback interface. We conduct
30 runs for each measurement, compute the mean, and calculate
99 % confidence intervals. We utilize the CKKS FHE scheme [20] in
SEAL, which supports floating-point numbers, i.e., allows for more
complex computations, in contrast to the also supported BFV FHE
scheme [32]. We define six levels for multiplication as required by
our real-world example (cf. Section 5.2). In particular, we achieve
128 bit-level security in SEAL with a polynomial modulus of 16 384.

5.1.2  Atomic Functions. To cover all aspects of our design, we
cover two functions (addition and multiplication) that the proxy
can directly compute on the homomorphically encrypted cipher-
texts as well as two operations (square root and identifying the
minimum of a set with two numbers) that must be offloaded to the
participating company. For all settings, the proxy first requests two
inputs (one for root computation) from the client. We illustrate the
performance results in Figure 4 and also include baselines without
any encryption, i.e., the same control flow without encryption.

The local computation at the proxy marginally outperforms the
offloaded functions. However, constrained network links further
amplify this effect as the transfer times increase. As expected, we fur-
ther notice that multiplication incurs more complex computations
in comparison to addition. Concerning the offloaded computations,
we notice that the total runtime for computing the square root is
slightly faster than identifying the minimum of two values because
only a single ciphertext has to be encrypted and decrypted.

The traffic needs reveal the expected as the transfer of a single
ciphertext adds <5 MB overhead. The local calculations at the proxy
do not require an additional round trip for offloading the ciphertexts
and returning the result. Thus, the offloaded functions result in
more observed traffic. The difference between the square root and
minimum computation stems from the number of input arguments.
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In comparison to the baseline, we notice at least a 5-fold increase
in the runtime and a <5500-fold increase for the observed traffic
across all functions. As expected, a secure implementation adds
tolerable overhead in terms of runtime and traffic in today’s settings.

5.1.3 Nested Computations. To investigate the scalability of the
different atomic functions when having longer (nested) chains, we
repeat the individual atomic functions up to 100 times each, as
shown in Figure 5. As our configured number of set levels does not
allow for chains of 100 multiplications (cf. Section 5.1.1), we refrain
from a dedicated multiplicative chain evaluation at this point. In
Appendix A.2, we discuss FHE multiplication and its used levels.

For all nested computations, we observe a linear complexity
with an increasing chain length. Local computations at the proxy
again outperform all offloaded operations. The benefits of local
computations is especially apparent for the traffic as no ciphertexts
need to be sent back and forth between proxy and company.

5.1.4 Discussion. Apart from our conducted measurements (oper-
ator and chain length), different properties of the company bench-
marking setting influence the computational complexity.
Number of KPIs and Algorithm Complexity. Naturally, the
number of KPIs has an influence on the required computations
as each atomic function incurs overhead. However, the KPIs are
independent of each other, i.e., they do not add polynomial com-
plexity. For example, Kerschbaum et al. [52] expect up to 200 KPIs
for a single benchmark. However, as we cannot give an algorithm-
independent estimate concerning the number of atomic functions,
we investigate a real-world example instead (cf. Section 5.2).
Number of Participants. Given that the computation of the
KPIs is completely independent of all other participants, each par-
ticipant takes the same time for the computation of the benchmark.
Selection of k. Increasing k, i.e., aggregating the results of more
companies, results in fewer ciphertexts being transferred between
the privacy proxy and the statistics server. However, in comparison
to the repeated ciphertext exchange between the privacy proxy and
the participants, its impact is negligible performance-wise.
Storage Needs and Computational Resources. Retaining all
(received or computed) ciphertexts at the proxy might be helpful
if new KPIs should be computed at a later point or if the used



algorithm is updated by the analyst. The ciphertexts add significant
storage overhead when compared to plaintext numbers. Hence,
aligned with C1, operators are encouraged to delete intermediate
data and to only persist needed (encrypted) KPIs. Regardless, cloud
deployments of both proxy and statistics server can allow both
operators to scale to the individual needs of the current use case.
Web-Based Client. To improve the usability and deployability
of PCB, we also implemented a WebAssembly-based client using
an existing port of SEAL [65] and a ported OPE library. This client
enables companies to participate in a privacy-preserving company
benchmarking using a standard web browser, i.e., without the bur-
den to set up complex software. We observe an expected [40] over-
head of around 15 % when comparing the performance of this web-
based client to our Python prototype. However, we believe that the
associated benefits outweigh this modest performance overhead.

5.2 A Real-World Benchmarking Use Case

To evaluate the performance of our approach in real-world settings,
we first introduce the background of our now considered (and pre-
viously conducted) real-world benchmark. Afterward, we integrate
its algorithm in PCB and measure the performance with real inputs.

5.2.1 Company Benchmarking in the Injection Molding Industry.
Initially conducted in 2014, a benchmark strictly focusing on the
injection molding industry included a limited number of six par-
ticipants ranging from small and medium-sized enterprises with
1000 employees and a turnover of 140 Mio. € to multinational cor-
porations with 36 500 employees and 2.9 Bil. € turnover. The im-
plemented benchmarking process included extensive manual labor
by the analyst. First, the analyst shared the questionnaires with
participants via email. Next, each company wrote their answers on
a printout of the questionnaire and returned the results by mail to
the analyst. Subsequently, the analyst manually inserted the input
data into a self-developed software (with the valuable algorithm) to
compute all KPIs. Finally, the analyst presented the results to each
company in-person without revealing the identities of the remain-
ing participants. This presentation also included recommendations
for further actions to improve the company’s position.

This real-world company benchmarking considers an organiza-
tional and technological perspective. The derived organizational
KPIs relate to the financial status and the satisfaction of customers
and employees. The technological perspective benchmarks the ef-
ficiency of manufacturing processes (such as the productivity of
machines), means of production, and the range of the manufactured
products, especially for injection molding. To ensure comparability,
all participants report on three specific components, i.e., best-selling,
most complex, and simplest product. The benchmark is not limited
to some general KPIs, but mainly focuses on the efficiency of the
injection molding department, e.g., how the participants’ means
harmonized with their portfolio. Furthermore, the competence to
develop, design, and manufacture highly functional components or
assemblies with low complexity is evaluated.

The questionnaire contained 423 distinct questions and collected
a total of 674 inputs per participant to eventually compute 48 KPIs.
Some of these values are extremely sensitive for the participants.
For example, the manufacturing costs of representative components,
the total costs of developing those components, or the hourly rate

of machines and employees thus must remain private. Likewise,
they serve as input for valuable algorithms that cannot be handed
to the participants to satisfy the analyst’s confidentiality need.

In our considered benchmark, appropriate graphical notations
present the results of KPIs. As previously shown in Figure 1, the
position of a single company is presented with an average of all
participants on a scale whose interval starts at the minimum value
of a KPI (worst in class) and ends at the maximum value (best in
class). To limit the participants’ exposure, the best and worst in
class companies remain anonymous. For example, KPIs containing
process information (e.g., quality of the manufacturing processes, or
ppm-rate) can be sensitive as competitors could derive or estimate
the company’s status. However, in 2014, the companies had to trust
the analyst to not misuse their private inputs and computed KPIs.

5.2.2 Measurements of a Real-World Use Case. Based on the inputs
that we collected from six companies in the injection molding
industry in 2014, we evaluated our design using real-world data. We
relied on the same algorithm that was developed for the previously
mentioned questionnaire and deployed it at the privacy proxy.
Algorithm Complexity. The complete derivation of all KPIs is
organized into 15 layers consisting of complex formulas each. We
dissect these chains of formulas into atomic functions. The layered
calculation of a KPI consist of subsequent atomic functions in the
interval of [3;51] with mean (1) = 14, median = 11. For all KPIs, we
calculate a total of 2173 operations ([0; 1330] with p = 114, median
= 17). We are able to locally compute 1429 operations ([0; 878] with
1 = 73, median = 6) at the proxy and have to offload 744 operations
([0;452] with p = 42, median = 8) operations to the participants.
A total of 8 inputs directly constitutes one of the 48 KPIs. The
remaining KPIs are computed using the analyst’s algorithm based
on a different number of inputs ([2; 490] with p = 45, median = 8).
Atomic Functions. We list all functions that are part of our
evaluated benchmark in Table 2 and indicate whether the respective
operation is computable on the privacy proxy using PHE or FHE.
During our evaluation, we computed addition, subtraction, and
multiplication on the proxy and offloaded all remaining operations
without any dummy requests or blinding. However, as we detail in
Table 2, blinding is an option for all offloaded functions to prevent
the leakage of the analyst’s intellectual property using obfuscation.
Performance. We sequentially measured the company runtime
of and observed traffic for each of our six participating companies

Table 2: Required Operations of our Real-World Algorithm.

Scheme
Operation

Addition (+) / Subtraction (-) v v v -

Clear-

text PHE

FHE Note

Multiplication (-) v scalar v -

Division (x + y) v scalar  scalar  Blind x, y with -¢
Exponent (x) v st Blind with -¢"
Exponent (xY) v Offload (c-x)y*d #
Root ( ¥/x) v Blind with -¢™
Absolute (|x]) v Blind x with -¢
Minimum / Maximum v Blind data with -c¢

x, y correspond to encrypted private values and n denotes a value known to the proxy
: Depends on the PHE scheme, i.e., additive [67] (shown) vs. multiplicative [77]
 Operation only feasible for small n only due to the multiplication levels in FHE
¥ Inverse of (c-x)? must be requested from the company, partially leaking the blind



10¢ (= Setup Runtime [ Setup Traffic Baseline (unenc.)l . 105
[0 Computation Runtime Ell Computation Traffic

10° -
10° @
THIN o e
2 10! . b i =
E ] / 102
= 10 5
=

1072

1

Client ID
Figure 6: The runtime takes 8.7 min for each company, while

the majority is needed to compute the KPIs. Both runtime
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Figure 7: The aggregation overhead is negligible. Increasing
k scales linearly with the runtime and traffic is constant.

and notice that the individual company inputs have no influence
on our results. In Figure 6, we present the individual measurements.
We use the logarithmic scale to highlight the marginal overhead of
our bootstrapping phase (1.29 s runtime and 22 MB traffic), which
is needed to generate and exchange the required key material. A
runtime of 8.7 min per company and measured traffic of 6.7 GB
between each company and privacy proxy indicate real-world ap-
plicability of PCB even with our complex algorithm. Even when
quadrupling the number of KPIs (to reach nearly 200 as expected by
Kerschbaum [52]) or with a constrained network link, our bench-
mark is concluded in less than a day (a considered boundary [53]).
In Figure 7, we detail the influence of iterating k from 1 to 6
during aggregation at the proxy and the subsequent transfer of
the KPI aggregates. As seen before, the new additions only have a
marginal impact on the runtime of at most 28 s. Regardless of the
selected k only a single ciphertext is sent to the statistics server per
KPI. Therefore, the measured traffic of 118 MB remains constant.
Network Influence. When considering real-world network
conditions [10, 23, 95] (an asymmetric participant network link
with 100 Mbit/s and 10 Mbit/s, respectively and a latency of 50 ms
to the proxy, i.e., a connection between North America and Eu-
rope [42]), we observe an increased company runtime of 3.1 h due
to the large volume of (uploaded) traffic over a slow link. The time
required for networking increases 22-fold, where the initial upload
of all encrypted 674 inputs takes significant time. In total, 1466 FHE
ciphertexts are sent by each company to the proxy, including the
results of 744 offloaded calculations and the final 48 KPIs. Thus, all
in all, PCB is also applicable in real-world network settings.
We set these constrained network conditions with tcconfig [48].
Exactness. To check the exactness of our computed results (C4),
we compare the results of our real-world use case using PCB oper-
ating on FHE ciphertexts with an implementation that operates on
plaintext data. We compute the relative deviation from the plaintext
results over all runs and clients and achieve an average deviation
of 0.16 % despite the nested computations. We observe the max-
imum deviation with 120.76 % for a KPI that computes a really
small value using small inputs, i.e., the absolute average deviation

is 1.73 x 1077, showcasing the impact of using FHE. A slightly in-
accurate approximated representation of floating-point numbers in
the used ciphertexts affects our (repeated) computations. As we did
not modify our used real-world algorithm in any way, an analyst
could easily adapt the algorithm, i.e., scale the inputs accordingly,
to mitigate the observed effect. The results after aggregation of all
KPIs across all companies with PCB deviates 1.32 X 107> % on aver-
age (maximum of 0.10 %) when compared to the plaintext results.
These results highlight that PCB can handle even sophisticated KPI
computations accurately, underlining its real-world applicability.
Takeaway. As shown with our real-world use case, our design
PCB is able to compute a large number of KPIs based on a sophisti-
cated algorithm, while protecting the required algorithm confiden-
tiality, using commodity hardware in a reasonable amount of time
and with an acceptable amount of produced traffic. Thus, PCB is
applicable in real-world deployments for industrial benchmarks.

6 CONCLUSION

In this paper, we revisited the privacy needs in company bench-
marking. In contrast to related work, we also consider the analyst’s
needs who wants to protect her intellectual property, i.e., the al-
gorithm used to compute KPIs from company inputs. Our design
PCB ensures the analyst’s confidentiality needs by keeping the
valuable benchmarking algorithm private. PCB features two in-
dependent components. First, an analyst-operated proxy handles
the benchmark and operates on encrypted data only. It offloads
non-FHE-computable calculations to the participants. Second, a
statistics server receives aggregates and shares the results with all
participants. This way, the privacy of all entities is preserved.

Our evaluation underlines the scalability of PCB using synthetic
benchmarks. We further repeat a real-world benchmark in the do-
main of injection molding with a sensitive benchmarking algorithm
that may not be leaked to participants to highlight the feasibility of
our approach. The privacy-preserving computation of all 48 KPIs
for a single company with its 2173 atomic functions based on 674
inputs is finished after 8.7 min, even on commodity hardware.

Future Work. For future work, we are mainly interested in ap-
plying PCB to additional real-world use cases, e.g., to study the
openness of production systems or the structure of production net-
works, where company benchmarking could not be performed so
far due to severe privacy concerns. With PCB, we address these
concerns and thus allow additional, previously untapped industries
to benefit from company benchmarking. While additional use cases
might identify further implementation effort, e.g., to support up-
dates of the benchmarking algorithm or replacements of submitted
company input as well as to also calculate the variance of KPIs
across companies at the proxy [51, 52, 54], they would also allow
us to further broaden our evaluation, e.g., to carefully look into the
impact of obfuscation during offloading (cf. Section 4.3.2).

Impact. With PCB, we present a readily available and real-world
applicable design for company benchmarking, which not only pro-
tects companies’ privacy but (unlike related work) also addresses
the needs of the analyst by protecting her valuable algorithm.

When looking at the vision of an Internet of Production [71], PCB
could allow companies to identify unrealized potentials that would
be retrievable through collaboration in a global lab of labs [70].
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A APPENDIX

As supplemental material to our paper, we include a sequence di-
agram detailing the protocol steps of PCB in Appendix A.1. To
provide additional background on multiplication in fully homomor-
phic encryption schemes, and CKKS [20] when using SEAL [17] in
particular, we briefly discuss its (current) constraints, also concern-
ing its conceptual implications for PCB, in Appendix A.2.

A.1 PCB Sequence Diagram

In Figure 8, we illustrate the steps of our design (cf. Section 4.3). The
bootstrapping of the privacy proxy and statistics server initiated by
the analyst is a one-time setup only. In contrast, each participating
company must individually register during the bootstrapping. Ex-
cept for the handling of the aggregates and extrema by the privacy
proxy and the statistics server, all steps are executed uniquely for
each participant. For readability, we omit formalized cryptographic
operations, authentication, and the exact message layouts.
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Figure 8: Sequence diagram detailing the protocol of PCB.

We textually present its four components in Section 4.3.

A.2 A Background in FHE Multiplication

To provide a simple explanation of multiplication using FHE (and
SEAL’s current CKKS implementation), we give an informal pre-
sentation in the following. Homomorphic schemes add (removable)
noise to the plaintexts as part of the encryption. This noise is also
influenced by operations on ciphertexts, i.e., conducted computa-
tions. The same holds for the multiplication in SEAL, respectively,
the implemented CKKS scheme that we rely on. During decryption,
this noise can be separated from the result until a certain noise
threshold is reached. After too many computations, the noise over-
flows and thereby makes the decrypted result unusable. A common
technique applied in these situations is bootstrapping [2], which
basically reduces the noise without requiring a re-encryption of
the current ciphertext, i.e., access to the private key is not required.
The CKKS scheme in SEAL, which we utilize in our prototypical
implementation and performance evaluation (cf. Section 5), is a
leveled FHE design, i.e., ciphertexts must be on the same level to
enable computations. To bring two ciphertexts to the same level,
CKKS allows for a direct update to a lower level of the ciphertext
(but not to a higher level). Certain operations, most importantly
multiplication, consume a level. The initial level of ciphertexts is
fixed by the HE context and linked to the security level and the ci-
phertext size by design. A higher level for ciphertexts with the same
security level results in larger ciphertexts and thereby increased
computational and communication needs. Thus, the level should be
as low as possible to reduce the consumed resources during FHE use
to a minimum, while still allowing for the anticipated operations.
Currently, the implementation of SEAL does not yet support
bootstrapping for CKKS [58], although this is on the implementa-
tion roadmap. Consequently, for now, ciphertexts cannot be “re-
encrypted” without the private key, e.g., to remove noise. Therefore,
repeated operations on the ciphertext are challenging without an
excessive ciphertext size. Furthermore, as each multiplication con-
sumes a level, reasonably applicable applications should stay below
20 multiplications, according to one of the SEAL developers [59].
In PCB, we are also affected by these constraints as we might
have to repeatedly conduct local calculations on the privacy proxy
while making sure that all input values of the current operation
are on the same level. Hence, depending on the algorithm, we
might consume the levels quite quickly. Therefore, the analyst
must carefully consider the exact operations (and their order) when
determining the HE context, i.e., parameterizing the CKKS scheme.
Fortunately, the interplay between privacy proxy and company
(that is already in place to offload complex calculations) significantly
eases these challenges. After every batch of offloaded operations,
each company returns its computed results as freshly encrypted
ciphertexts, effectively realizing a periodic re-encryption of cipher-
texts. Hence, the required level can be significantly smaller than the
longest chain of operations, i.e., atomic functions (including level-
decreasing multiplications), in our benchmarking algorithm. For
algorithms without any offloaded operations or long chains of mul-
tiplications, we can still trigger an offloading of the re-encryption
to the company (either directly or embedding it into a dummy com-
putation). To maintain algorithm confidentiality, we can thereby
apply the same obfuscation techniques as discussed in Section 4.3.2.
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