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ABSTRACT
Anonymous communication on the Internet is about hiding the
relationship between communicating parties. At NDSS ’16, we pre-
sented a new website fingerprinting approach, CUMUL, that uti-
lizes novel features and a simple yet powerful algorithm to attack
anonymization networks such as Tor. Based on pattern observa-
tion of data flows, this attack aims at identifying the content of
encrypted and anonymized connections. Apart from the feature
generation and the used classifier, we also provided a large dataset
to the research community to study the attack at Internet scale.
In this paper, we emphasize the impact of our artifacts by analyz-
ing publications referring to our work with respect to the dataset,
feature extraction method, and source code of the implementa-
tion. Based on this data, we draw conclusions about the impact
of our artifacts on the research field and discuss their influence
on related cybersecurity topics. Overall, from 393 unique citations,
we discover more than 130 academic references that utilize our
artifacts, 61 among them are highly influential (according to Se-
manticScholar), and at least 35 are from top-ranked security venues.
This data underlines the significant relevance and impact of our
work as well as of our artifacts in the community and beyond.

CCS CONCEPTS
• Security and privacy → Pseudonymity, anonymity and un-
traceability; • Networks→ Network privacy and anonymity.
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1 INTRODUCTION: ADDRESSED PROBLEM
Anonymous communication on the Internet is about hiding the
relationship between communicating parties. For many people,
in particular, for people living in oppressive regimes, the use of
anonymization techniques is the only way to exercise their right
to freedom of expression and to freely access information, without
fearing the consequences. Thus, these techniques are often used to
bypass country-level censorship. Hence, users of anonymization
techniques strongly rely on the underlying protection as defined in
their attacker model. The Tor network [11]—the most popular low-
latency anonymous communication system nowadays is used by
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Figure 1: Website fingerprinting (WFP) attack on Tor users.

millions of daily users—promises to hide the relationship between
the sender of a message and its destination from a local observer
(e.g., a local system administrator, an ISP, a Tor node operator, or
everyone with the ability to eavesdrop wireless connections).

The website fingerprinting (WFP) attack is a special case of traffic
analysis. Performed by a local eavesdropper, it aims to infer infor-
mation about the content (i.e., the website visited) of encrypted
and anonymized connections by observing network patterns be-
tween the sender and the first anonymizing node (i.e., the entry
node). Here, the attacker merely utilizes meta information, such as
packet size and its direction, without breaking the encryption, as
we illustrate in Figure 1. To (passively) capture the network traffic,
the attacker either controls (a) a compromised network device on
path or (b) operates a malicious entry node. Before 2011, Tor was
considered to be secure against this threat [19, 32]. Since then, WFP
has become an active field of research [10, 12, 25, 34, 38, 41, 42].

In our NDSS paper [31], we propose a novel, best-performing
WFP attack at the time, based on a subtle method to map network
traces into a robust representation of a class (a set of abstracted
objects that share a common characteristic; in our case, multiple
traces are recorded for the same webpage). We abstract the loading
process of a webpage by generating a cumulative behavioral rep-
resentation of its trace. From this data, we extract features, called
CUMUL. These features implicitly cover characteristics of the traffic
that other feature sets have to explicitly consider, such as packet
ordering or burst behavior. By design, CUMUL is robust against
differences in bandwidth, congestion, and the timing of a page load.

To evaluate the severity of the WFP attack in reality, we built
the most representative dataset ever assembled in this domain
at the time. The dataset is representative not only because of its
size, but also because it is not subject to simplified assumptions
made by the related work (e.g., most researchers consider only
the index pages, i.e., those pages that web servers provide for a
requested domain [12, 19, 42]). Our dataset consists of over 300 000
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webpages (which is ten times larger than the biggest existing set
at the time [22] and, to the best of our knowledge, still the second
biggest as of today [34]). It consists of two parts: a random sample
of World Wide Web and URLs from the real Tor traffic. Due to
ethical concerns, we could only publish the first part of the dataset.

Using our artifacts (i.e., robust features, a simple yet effective
classifier, and representative datasets), we show that our attack
outperforms existing state-of-the-art attacks in terms of accuracy
while computationally being several orders of magnitude faster [31].
Thanks to the large size of the datasets and our computationally
effective classifier, we provide several new insights: We were the
first to show that with existing classifiers, webpage fingerprinting
for any webpage is similar to finding a needle in a haystack—in gen-
eral, it is doomed to fail. However, website fingerprinting (detecting
complete sites instead of single pages only), despite being a more
realistic scenario, is also easier to handle for existing classifiers.

Our artifacts allow researchers to easily benefit from our work
and to follow up on our insights. Although WFP is still a major
threat to the anonymity of Tor, we initiated a discussion with our
artifacts that due to the large number of the webpages in the World
Wide Web, the scalability and practical realization of the attack is
much harder than thought before and boosted further studies of
the limits of webpage and website fingerprinting at Internet scale.

2 OUR ARTIFACTS AND HOW THEYWORK
Subsequently to the publication of our paper [31], we also made
our research artifacts publicly and freely available online [30]. Our
artifacts cover the complete pipeline to study WFP attacks, starting
from datasets and data extraction, through feature generation up
to classification and evaluation scripts, as illustrated in Figure 2. In
the following, we focus on the three most relevant artifacts: our
novel effective features (called CUMUL), an efficient SVM-based
classifier, and our representative datasets.

2.1 Our CUMUL Features
Instead of manually identifying characteristics that may contain
significant information about the load behavior, we aimed at de-
riving our features from an abstract representation that implicitly
covers all relevant characteristics. As identified before [32, 41], four
basic features significantly contribute distinctive information: Nin,
the number of incoming packets, Nout, the number of outgoing
packets, Sin, the sum of incoming packet sizes, and Sout, the sum
of outgoing packet sizes. Additionally, to characterize the progress
of the page load, we proposed to use the cumulated sum of packet
sizes of a network trace and to sample 𝑛 additional features.

We define such a network trace, i.e., a sequence of raw TCP
packet sizes, as follows. 𝑇 = (𝑝1, . . . , 𝑝𝑁 ), where 𝑝𝑖 > 0 indicates
an incoming packet and 𝑝𝑖 < 0 an outgoing packet. The cumu-
lative representation of this trace is then calculated as 𝐶 (𝑇 ) =

((0, 0), (𝑎1, 𝑐1), . . . , (𝑎𝑁 , 𝑐𝑁 )), where 𝑐1 = 𝑝1, 𝑎1 = |𝑝1 |, and 𝑐𝑖 =
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Figure 2: Our provided artifacts cover all required steps.
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Figure 3: Sampling of two cumulatively represented traces.

𝑐𝑖−1 + 𝑝𝑖 , 𝑎𝑖 = 𝑎𝑖−1 + |𝑝𝑖 | for 𝑖 = 2, . . . , 𝑁 . From this representation,
we derive 𝑛 features C1, . . . , C𝑛 by sampling the piecewise linear
interpolant of 𝐶 at 𝑛 equidistant points, as captured in Figure 3.

Our simplified example shows the cumulative representation of
two traces 𝑇1 and 𝑇2, consisting of |𝑇1 | = 18 and |𝑇2 | = 14 packets
(each of size ± 568 bytes) and the corresponding features C𝑖 for
𝑛 = 10. With this method, we are able to extract a fixed number of
identifying characteristics from traces with varying lengths. In our
paper [31], we show that 𝑛 = 100 yields the best trade-off between
classification accuracy and computational efficiency. Given the
expressiveness of our features and their small number needed to
outperform competitive classifiers, we could study the scalability
of real-world WFP attacks by considering huge datasets.

As a beneficial side-effect of our feature set, derived fingerprints
can be intuitively visualized and compared. In Figure 4, we ex-
emplarily detail CUMUL fingerprints for two webpages (40 traces
each). Distinctive load behaviors characterize the two webpages.
Our subtle method to represent this load behavior based on the
cumulated packet sizes enables the differentiation of fingerprints of
these two pages even by the human eye. Obviously, as the universe
size grows (number of considered websites), this differentiation is
not that easily possible and requires an efficient classifier.

2.2 Our Classifier
In addition to our novel feature set that reflects a sampled cumula-
tive representation of a trace, we also proposed using an SVM-based
classifier as part of our paper [31]. After the collection of relevant
network traces and the subsequent feature extraction, a classifier is
usually applied to differentiate them, i.e., to study the implications
of WFP attacks (their accuracy) for Tor users. Since our extracted
fingerprints have a fixed length by definition, we can directly use
them as input to train the SVM classifier. In particular, we utilize a
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Figure 4: CUMUL’s feature visualization of two websites.
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Table 1: Paper citations per year based on Google Scholar.

2016∗ 2017 2018 2019 2020 2021 2022† Sum

13 41 47 55 70 92 62 382
∗from February 2016 †until September 2022

slightly modified libSVM [6] implementation, which we specially
tailored for the needs of the WFP attack evaluation. We provide it
as a dedicated artifact to foster additional work in the area.

2.3 Our Dataset for Representative Evaluations
Even though researchers could gather their own datasets, this pro-
cess requires significant patience and effort to accurately prepare,
crawl, record, and post-process representative large-scale datasets.
Moreover, fair comparisons of different attacks are only possible
if the evaluations are performed on the identical datasets. Hence,
when ethically possible (i.e., no real user data that can be misused
to harm their privacy is recorded), we published datasets as re-
search artifacts. At that time, we provided the most comprehensive
and realistic dataset to evaluate WFP attacks. Instead of limiting
our dataset to index pages of popular sites, our artifact contains
various webpages that have been actually retrieved. We combined
different sources of information (cf. our NDSS paper for more de-
tails [31]), such as links distributed via Twitter, Google trends,
websites blocked in certain countries, or traces of a Tor exit node,
to create a random and representative sample of webpages visited
on the Internet (or, over Tor in particular) at the time of evaluation.

We publish two types of datasets: first, we have a foreground set
that consists of 1125 individual webpages with 40 instances each.
This dataset can be applied for closed-world evaluations, and it
is by an order of magnitude larger than most datasets at the time
(typically, related work only considered closed-world evaluations
with 100 webpages). As part of an open-world evaluation, such a set
can also be utilized to represent a set of monitored webpages, i.e.,
those pages that the attacker wants to detect. Second, we provide a
background set that includes 111 884 individual webpages in a single
instance. In this dataset, webpages correspond to unmonitored
(unknown) pages. As outlined before (cf. Section 1), our dataset is
still the second largest ever collected for WFP. We made our datasets
available in both TCP and TLS representation to give researchers
as much flexibility as possible when performing their evaluations.

3 EVIDENCE OF THE ARTIFACTS’ IMPACT
Following the description of our artifacts, we now highlight their
relevance and impact within the research community. According to
Google Scholar, as of September 2022, our paper has been referenced
382 times. From the statistics per year (Table 1), we observe that the
relevance of our paper increases steadily from 41 citations in 2017,
over 55 in 2019, to 92 in 2021 (data for 2022 is still incomplete at the
time of writing). Moreover, in Google’s 2021 Scholar Metrics, our
work was ranked as the 11th most cited paper at NDSS [15] within
all NDSS papers from the five most recent years (2016–2021).

To properly assess the impact of our artifacts, we study papers cit-
ing our work in more detail. Besides Google Scholar, we also include
papers indexed by Web of Science and SemanticScholar. Overall, we
end up with 393 sources that reference our work. According to

Table 2: Relevant works that apply our artifacts per year.

2016∗ 2017 2018 2019 2020 2021 2022† Sum

10 19 16 23 19 29 18 134
∗from February 2016 †until September 2022
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Figure 5: Frequency of references at top-ranked conferences.

SemanticScholar [1], our work was highly influential for 74 papers.
Next, we look closely at how related work utilizes our artifacts.

3.1 Key Numbers on Artifacts’ Use in Research
In addition to frequent citations, we also observe a notable number
of papers reusing our artifacts as part of their security research.

Methodology. Out of 393 articles citing our work, we were able
to retrieve all but 5 and inspected them all manually. In particular,
we investigate the usage of our artifacts: features (cf. Section 2.1),
classifier (cf. Section 2.2), and dataset (cf. Section 2.3). With this
approach, we highlight relevant papers (those works that actually
use our artifacts). We followed a conservative approach, marking
articles as irrelevant if we do not find strong evidence of artifacts’
usage. Finally, we end up with 134 relevant references, out of which
8 are posters, 26 are theses, and 6 are unreviewed preprints (at the
time of writing). Table 2 shows their overall distribution by year.

Top-Ranked Conferences. To assess the venues’ reputation
of analyzed papers, we refer to the CORE conference [8] and jour-
nal [9] rankings. If not listed there, we consult Gu’s ranking [17].
Overall, 27 works that use our artifacts were published at A∗ con-
ferences. Apart from security conferences, two A∗ papers originate
from WWW and one from INFOCOM. We further discovered 42
and 19 papers at A- and B-ranked venues, respectively.

Additionally, we specifically looked into top-ranked conferences
in the security field, i.e., the A∗ conferences IEEE S&P, ACM CCS,
USENIX Security (Sec), and NDSS, as well as PETS, a premier venue
for research on anonymous communication [33] (supplementary
data on PETS’ A-ranking with a detailed justification of its quality
is available [7]). Figure 5 shows the distribution of relevant papers
(and posters) at these top security conferences: most papers (11)
were published at PETS, followed by ACM CCS and USENIX Sec.
At ACSAC, 2 papers apply our artifacts as part of their research.

Applied Artifact Components. In Figure 6, we grouped the ar-
tifacts’ use by features (dark blue), classifier (light blue), and dataset
(dark green). Additionally, light green indicates how many authors
re-published components of our artifacts (including derivations and
re-implementations) as part of their own artifacts. We notice that
61 of the 74 highly-influential [1] papers apply our artifacts.

Our proposed features and the provided classifier are frequently
applied and lay the foundation for various research efforts, also
beyond WFP (cf. Section 3.2). The usage of our artifacts generally
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Figure 6: Usage and re-distribution of our artifacts per year.

increases over time, e.g., from 19 citations in 2017 to 29 in 2021. In
total, while our features have been applied 131 times, we count 116
uses of our classifier. Compared to the other artifacts, our dataset
has the lowest usage, with a total of 15 instances. A possible reason
is the emergence of methods using deep learning (e.g., [34, 38, 45])
that require a larger number of instances. Due to its elegant sim-
plicity, we further notice that researchers frequently re-implement
CUMUL (≥22 times). Additionally, 15 papers adapt our features,
and 6 papers alter the proposed classifier. Within 43 third-party
artifacts, we discover a re-distribution of our artifacts in 18 cases. At
least 2 follow-up papers even rely directly on such re-distributions.

Influential Citing Authors. When studying the application
of our artifacts by well-established researchers, we discover at
least 36 professors (14 full professors) who publish at top venues
in the domain (A∗ and PETS). In total, they account for contribu-
tions in 54 papers and 14 posters. When looking at their h-indexes
(according to Google Scholar), we count 10 professors with an h-
index over 40 and 22 professors with an h-index over 20. If we
also consider A-ranked venues, these numbers change to 21 and 41,
respectively. Since not all authors use Google Scholar, our results
are conservative (the actual number is expected to be higher). The
most influential author has an impressive h-index of 101.

3.2 Associated Discoveries and Trivia
After our quantitative analysis, we now focus on qualitative aspects
that underscore the impact of our artifacts for security research.

Quotes.During our manual study, we came across several quotes
that underline the performance of CUMUL and our proposed feature
set. Several researchers argue that our features are very effective,
especially given their manual selection: ▶ “CUMUL is the best per-
forming manual feature extraction attack in vanilla WF settings” [3],
▶ “The CUMUL algorithm [...] is one of the most accurate in the
literature.” [5], and ▶ “The cumulative sum features are very effec-
tive” [46]. Moreover, they praise the computational efficiency when
applying our artifacts: ▶ “By sampling features from the cumulative
representation of a trace, CUMUL outperforms previous attacks
while staying computationally efficient.” [18] and ▶ “CUMUL per-
formed the best [...], and proved to be more practically feasible” [34].
Thus, in addition to quantitative facts, we also observe a qualitative
distinction of our work by security researchers in the area.

Best Practices Survey. Arp et al. [2] conducted a study on the
use of machine learning in security research and contacted us to in-
clude our work “because of [our] outstanding contributions”. With
the authors, we thoroughly discussed their derived pitfalls in the
context of our work and WFP in general. Thereby, we contributed to

(i) raising the awareness of methodological pitfalls and (ii) support-
ing a collection of best practices for future research. As confirmed
by Arp et al., back in 2016, we already initially discussed possible
pitfalls (e.g., sampling bias and simplified lab-only evaluation) that
are relevant to security research, our domain, and our artifacts.

Website Fingerprinting Research. Our paper is part of the
renowned list of selected papers on anonymity [13]. Moreover, we
are confident to have motivated further research on the finger-
printing and fingerprintability of complete websites, an overlooked
direction. Jiang et al. stress: “From [[31]], it can be seen that the
existing studies on [website fingerprinting] are unrealistic and have
an impact on the collection of the dataset because they only consider
the homepage of the website and not the subpages.” [21, translated].

Concerning the prevalence of WFP at ACSAC, we discover 6
research papers on website fingerprinting or with reference to it.

Other Impacted Research Areas. Apart from the publications
at A∗ conferences in other domains, e.g., at WWW (web) and IN-
FOCOM (networking), we came across various relevant papers that
do not focus on WFP. We discovered several references to our work
in the context of DNS privacy [4, 37], user profiling [14], or Tor
measurements [20]. Additionally, CUMUL was applied for various
fingerprinting tasks, e.g., apps [39, 40], search keywords [26–28], or
hidden services [43, 44]. Likewise, at least 10 papers utilize our ar-
tifacts to classify web traffic on a general level. Our work is further
used to generate packet traces [16], optimize features [36], predict
the fingerprintability [29], estimate information leakage [23], and
study WFP metrics [24]. Consequently, the impact of our work and
artifacts goes beyond (intended) applications for WFP. We even
discovered a patent that cites our work [35].

4 CONCLUSION: OUR SECURITY ARTIFACTS
In this paper, after introducing the addressed problem and how our
artifacts work, including our intuitive CUMUL feature set, we have
highlighted the impact of our approach and published artifacts. Our
approach utilizes a novel feature set and a simple yet powerful
algorithm when performing website fingerprinting attacks against
anonymization networks such as Tor. By analyzing publications
that refer to our work w.r.t. our artifacts (features, classifier, and
dataset), we demonstrated the enormous impact our artifacts had
and have on the research field and beyond. Out of 393 papers citing
our work, more than 134 references rely on our security artifacts, 61
among them are highly influential (according to SemanticScholar),
and at least 35 are from top-ranked venues. Thus, by making our
easy-to-use, easy-to-adapt, and re-distributable artifacts available to
the research community, we facilitated significant progress on the
general challenge of understanding limits and protecting against
traffic analysis attacks. Finally, our presentation of key facts and
influence on other areas greatly underlines the impact and relevance
of our security artifacts, even beyond the domain of WFP.
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