
IPAL: Breaking up Silos of Protocol-dependent and
Domain-specific Industrial Intrusion Detection Systems

Konrad Wolsing
Fraunhofer FKIE

RWTH Aachen University
konrad.wolsing@fkie.fraunhofer.de

Eric Wagner
Fraunhofer FKIE

RWTH Aachen University
eric.wagner@fkie.fraunhofer.de

Antoine Saillard
RWTH Aachen University

Fraunhofer FKIE
antoine.saillard@rwth-aachen.de

Martin Henze
RWTH Aachen University

Fraunhofer FKIE
henze@cs.rwth-aachen.de

ABSTRACT
The increasing interconnection of industrial networks exposes them
to an ever-growing risk of cyber attacks. To reveal such attacks early
and prevent any damage, industrial intrusion detection searches
for anomalies in otherwise predictable communication or process
behavior. However, current efforts mostly focus on specific domains
and protocols, leading to a research landscape broken up into iso-
lated silos. Thus, existing approaches cannot be applied to other
industries that would equally benefit from powerful detection. To
better understand this issue, we survey 53 detection systems and
find no fundamental reason for their narrow focus. Although they
are often coupled to specific industrial protocols in practice, many
approaches could generalize to new industrial scenarios in theory.
To unlock this potential, we propose IPAL, our industrial protocol
abstraction layer, to decouple intrusion detection from domain-
specific industrial protocols. After proving IPAL’s correctness in a
reproducibility study of related work, we showcase its unique ben-
efits by studying the generalizability of existing approaches to new
datasets and conclude that they are indeed not restricted to specific
domains or protocols and can perform outside their restricted silos.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems; • Net-
works→ Cyber-physical networks; Network monitoring.
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1 INTRODUCTION
Digitized industries play an essential role in today’s society across
various domains such as water treatment and distribution, power de-
livery, chemical processing, or manufacturing [59]. To realize their
functionality, industries rely on (near) real-time communication
of process values and commands using a large pool of specialized
industrial protocols, such as Modbus or EtherNet/IP [57]. The in-
creasing reliance of these protocols on the Internet Protocol (IP) to
foster automation, remote control, and optimized processes, how-
ever, also moves traditionally air-gapped industrial networks closer
to cybersecurity threats [59]. Indeed, a growing number of cyber in-
cidents with detrimental environmental damage and risk to human
life [55, 116] highlight the importance and urgency of adequately
protecting industrial communication networks.

As a non-intrusive, retrofittable, and cheaply deployable security
solution, Intrusion Detection Systems (IDSs) offer a great additional
layer of defense that is already well-established in traditional en-
vironments, such as office or data-center networks. While these
traditional IDSs (e.g., Zeek [94]) offer a certain benefit to industrial
networks, they also reach their limitations: Stealthy attacks differ-
ing just enough from normal operations to cause serious harm are
hardly detectable by them [114]. Meanwhile, industrial protocol’s
rather deterministic and predictable nature offers unique opportu-
nities for process-aware or semantic intrusion detection [49]. Hence,
Industrial IDSs (IIDSs) leveraging these regularities are necessary
to protect industrial networks. Consequently, a large research com-
munity has gathered [34, 49, 58, 65, 84, 90, 98, 114], proposing
specialized solutions for a wide variety of industrial scenarios.

However, although different industrial domains exhibit similar
predictable communication and process patterns, research on IIDSs
is highly tailored to specific domains and communication protocols.
While technical and engineering reasons for such tight coupling
might exist, we find this strong interdependence rather surprising
and contrary to intuition. From an IIDS perspective, all industrial
protocols essentially exhibit the same distinct characteristics: They
primarily exchange sensed data and commands using a small set
of well-defined communication patterns [121]. Additionally, while
specifics of benign and malicious behavior change between scenar-
ios, these can mostly be trained prior to deployment.

Although there exists no fundamental conceptual reason for
the dependence of IIDSs on specific industrial protocols, IIDSs still
specialize to few protocols, limiting their applicability to single
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scenarios. Moreover, besides contrary claims [33, 46, 61, 68], it is
seldom testedwhether a specific IIDS evenworks outside the precise
scenario and industrial protocol it was developed for. Consequently,
the overall progress in research on IIDSs is slowed down due to
niche solutions that do not improve on prior work from other
industrial fields, wasting tremendous advancements in detecting
cyber attacks on industrial systems.

Contributions. To break up the prevalent research silos of
protocol-dependent and domain-specific IIDSs and ultimately trans-
fer the advancements of IIDS solutions to new industrial scenarios,
we make the following contributions in this paper:

• Beginning with a survey of 53 IIDSs from related work, we iden-
tify the characteristics of industrial communication they rely
on to detect anomalies and attacks. Thus, we theoretically iden-
tify the potential for protocol-independent and domain-agnostic
intrusion detection across existing IIDSs (Sec. 3).

• To turn these results into practice, we introduce the IPAL in-
dustrial protocol abstraction layer. IPAL sits between industrial
protocols and IIDSs, captures all aspects relevant for intrusion
detection in a unified representation, and thus facilitates protocol-
independent and widely applicable IIDSs (Sec. 4).

• We showcase the practical applicability and correctness of IPAL
in a reproducibility study of eight IIDSs from related work. We
show that IPAL provides all required information, and we simul-
taneously reproduce scientific results as an independent party,
an important but often neglected step in research (Sec. 5).

• We illustrate the various benefits for IIDS research of IPAL in three
case studies. With IPAL, we are able to compare different IIDSs,
even from opposing research branches, study to what extent they
generalize to new scenarios, and, for the first time, transfer the
advancements of IIDSs to new protocols and domains (Sec. 6).

Availability Statement. To let IPAL become the foundation of
future work on industrial intrusion detection, we make our source
code available. This includes tools to transcribe industrial proto-
cols [43] and existing datasets into IPAL [41], as well as IIDSs im-
plementations from our reproducibility study [42] (to the extent
permitted by licenses or authors).

2 INDUSTRIAL INTRUSION DETECTION
As a foundation for our work, we begin by recapitulating the core
idea behind intrusion detection and what makes it special in in-
dustrial networks. Based on this, we identify key limitations of
industrial intrusion detection research that prevent the broad appli-
cation of improvements achieved for isolated industrial scenarios.

2.1 Intrusion Detection
Intrusion (or anomaly) detection is the art of automatically uncov-
ering cyber attacks or other suspicious activity by passively mon-
itoring a system’s behavior, e.g., w.r.t. communication [110, 119].
The core assumption behind Intrusion Detection Systems (IDSs),
which implement intrusion detection, is that cyber attacks lead to
distinctively different (anomalous) system behavior than benign
activity. As their passive nature allows retrofitting them to existing
deployments easily, IDSs are popular to complement preventive
security measures, i.e., integrity or authentication.

Traditionally, IDSs were designed for office, server, or data-center
networks with largely fluctuating traffic and usage patterns [108].
Even though this makes it challenging to define benign activity
comprehensively, there is a decent understanding of how individ-
ual attacks are performed on these networks, as attacks and attack
patterns are typically used across many different networks, e.g., by
widely-used malware. Thus, standard methods to reliably detect
such (known) attacks are signature or rule-based approaches, which
compare user and network behavior against a list of attack indica-
tors, with well-established implementations such as YARA [117],
Suricata [44], Zeek [94] (previously Bro [106]), and Snort [100].

2.2 Promises of Industrial Intrusion Detection
Intrusion detection is particularly attractive for industrial networks,
as retrofitting other (active) security measures often results in costly
hard- or software modifications, major downtime, or the need to
redo acceptance tests. W.r.t attack and system behavior, however,
we observe exactly opposite conditions for intrusion detection in
industrial networks: While rather deterministic industrial tasks lead
to more predictable communication patterns [57], attacks are often
more subtle and scenario-specific, severely limiting predictability
and thus signature or rule-based approaches.

Most importantly, attacks against industrial networks are often
specifically designed for a single or few targets and hardly gen-
eralize across domains (as, e.g., malware does), making it hard to
catch them by predefined rules. Furthermore, industrial settings are
susceptible to subtle attacks [114, 126] where attackers send legiti-
mate traffic (as allowed by rules) but at the “wrong” time to trip the
system into a dangerous state. Thus, IDSs designed for typical IT
networks cannot simply be transferred to industrial settings [128].

Still, industrial scenarios provide unique opportunities to detect
intrusion and anomalies through different means, e.g., the tight
coupling of industrial processes such as water treatment, power
delivery, chemical processing, or manufacturing, with the physical
environment via sensors and actuators. To this end, process-aware
or semantic IIDSs incorporate information from the physical and/or
communication level to uncover highly specialized and subtle at-
tacks and anomalies. Therefore, IIDS approaches typically “learn” a
model of benign behavior for a specific facility and alert deviations
from this model. Such models may incorporate additional system
knowledge, e.g., that certain actuator combinations never occur,
resulting in an IIDS not requiring individual attack knowledge.

2.3 Limitations of Current IIDS Research
Given these promises of IIDSs to detect sophisticated and safety-
critical attacks on industrial networks and processes, a plethora
of different research fields for IIDSs in various industrial domains
has been established [49, 90, 114], including industrial control sys-
tems [34, 58, 65], intra-vehicular communication [84], or water
treatment [98]. Across these various research fields, we find that
individual IIDSs are tailored to specific domains and communica-
tion protocols. Consequently, advancements made for one scenario
often cannot generalize to other industrial protocols or domains,
limiting their widespread use, slowing down innovation, and the
overall progress in securing industrial networks. We identify two
core problems that lead to these limitations of current IIDS research.
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(a) The current state-of-the-art
requires a tailored implementa-
tion of IIDSs for each protocol.

(b) Protocol-independent IIDSs
would allow separating protocol
parsing and IDS development.

Figure 1: To overcome the limitations of current IIDS re-
search, protocol-independent IIDSs promise to break up the
strong interdependence between IIDS approaches and the
specific industrial protocol and domain they operate in.

First, compared to traditional computer networks, we observe
a huge heterogeneity in industrial domains, each with unique and
custom communication protocols for legacy reasons. Thus, current
IIDSs generally focus on one specific domain and industrial protocol
combination, presenting yet another (novel) approach in isolation
without building on top of prior research findings. E.g., two similar
approaches independently propose to use Probabilistic Suffix Trees
for Modbus [123] and IEC-104 [79], highlighting that work is done
twice across different industrial scenarios.

Second, IIDS research across different industrial domains suffers
from an evaluation bias, where vast inconsistencies in used evalua-
tion methodologies make comparisons across publications hardly
possible [49, 78, 114]. Moreover, the use of only a few datasets (e.g.,
SWaT [50]) or many private ones steers the collective research
efforts in a direction where solutions are optimized and biased
towards specific scenarios. This problem is already known for tradi-
tional IDSs [92] but is even more severe in industrial settings, where
systems expose very narrow yet domain-specific behavior [111].

Consequently, although different approaches claim broader ap-
plicability (without proof) [33, 46, 61, 68], the actual generalizability
of proposed IIDSs to new settings within the same domain or across
domains remains mostly unexplored [36, 78]. Thus, the various re-
search streams in the area of IIDSs are indeed disjoint. As a result,
the overall research field is slowed down, as new approaches are de-
signed for niches without improving on previous research and are
biased to datasets from specific scenarios. It thus remains unknown
to what extent the tremendous advancements in the detection of
cyber attacks on industrial systems can or cannot be generalized
and transferred from their isolated niches to a broader scale and
thus sustainably increase security for many industrial networks.

3 THE CASE FOR PROTOCOL-INDEPENDENT
INDUSTRIAL INTRUSION DETECTION

Currently, the IIDS research landscape is scattered across hetero-
geneous industrial domains (cf. Sec. 2.3), leading to a situation as
depicted in Fig. 1a, where IIDSs are developed in isolation for spe-
cific industrial protocols and domains. Consequently, research on
IIDSs is limited w.r.t. generalizability, evaluation scenarios, wide-
spread use, and coherence between research streams.

To overcome these limitations, in this paper, we make a case for
protocol-independent IIDSs, as shown in Fig. 1b, where IIDSs do not

have to care about the underlying protocol anymore while simul-
taneously being transferable to various scenarios with little to no
additional effort. Our proposal for protocol-independence in IIDSs
is motivated by two observations: First, for the purpose of intrusion
detection, essentially all industrial protocols show similar function-
ality, i.e., the exchange of sensor readings and actuator commands.
Second, in principle, the underlying detection approaches of IIDSs
work similarly as they each know or learn a model of a specific
industrial process’s behavior and detect anomalies by comparing
their models to the monitored physical process.

Given these observations, we postulate that a large portion of ex-
isting work is not necessarily bound to the specifics of the industrial
domain and protocol they are designed for and may generalize well
to other domains and protocols. Thus, we are convinced that tack-
ling the diversity in industrial protocols is key to breaking up the
isolated silos in the IIDSs research landscape and hence allows the
wide-ranging application of IIDSs across domains and protocols.

To realize this goal, we first highlight the benefits of protocol-
independent IIDSs for the research community (Sec. 3.1) before we
survey 53 state-of-the-art IIDS approaches to analyze their potential
for generalizing across industrial domains and protocols (Sec. 3.2).

3.1 Benefits of Protocol-Independent IIDSs
Although IIDSs are specifically tailored to a single industrial proto-
col and domain nowadays, this does not imply that their benefits are
necessarily restricted to a single combination. Protocol-independent
IIDSs (cf. Fig. 1b) instead promise to operate detached from specific
industrial protocols or domains and thus exhibit several advantages.

First, this would allow applying IIDSs to multiple industrial pro-
tocols within the same domain. E.g., power grids that historically
rely on different protocols such as IEC-104 (covered by IIDSs [40, 79–
81]) or DNP3 (covered by [46, 96]) would no longer require separate
IIDSs. Moreover, if the underlying industrial protocol could be ex-
changed, the potential to generalize detection methodologies across
domains not initially thought of would become directly accessible.

Also, by designing IIDSs with protocol-independence in mind,
developers no longer have to extract relevant data from a specific
industrial protocol in a time-consuming and error-prone process.
Instead, this process can be left to domain experts who know the ins
and outs of specific network protocols, which has already proved
beneficial for prominent intrusion detection datasets, e.g. SWaT [50]
providing pre-processed process data from network traffic.

Finally, it becomes easier to reproduce results, validate findings
in different scenarios, and fairly compare IIDSs based on common
metrics, thus constituting to sound scientific experiments [49, 113].
Protocol-independence allows to efficiently validate results from
prior work and expand upon them, a step that is often neglected in
research [18, 113], especially when the original scenario is unavail-
able, flawed, or too narrow in scope.

Consequently, decoupling IIDSs from the underlying industrial
protocol promises to address the transferability of IIDSs and their
generalizability to new scenarios. It can also streamline future re-
search efforts on IIDSs by enabling extensive evaluations, valida-
tions, or removing potential biases with regard to specific protocols
or domains. However, so far, it remains open how big the potential
for realizing protocol-independent IIDSs actually is.
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3.2 Potential for Protocol-Independent IIDSs
To identify the potential for protocol-independent IIDSs, we first
study to which extent existing IIDSs can generalize to new indus-
trial protocols and domains, which is directly related to the protocol
and process information they operate on. However, while existing
surveys identify the need for generalizing IIDSs [36], they do not
investigate whether existing work shows potential in this regard.
Bridging this gap, we survey 53 IIDSs covering a wide range of de-
tection methods, industrial protocols, and domains. We specifically
focus on identifying which information they use for detection.

As our goal is to identify the potential for protocol-independent
IIDSs, we specifically target process-aware or semantic IIDSs (lever-
aging knowledge about the physical process), as these are mostly
independent of the used protocol. Contrary, we exclude IIDSs lever-
aging specific characteristics of physical communication [71, 72].

Survey Structure. In the following, we structure and discuss our
survey, as depicted in Tab. 1, along two broad categories of process-
aware and semantic intrusion detection: Communication-based ap-
proaches (Sec. 3.2.1) which incorporate characteristics of industrial
network traffic and process state-aware approaches (Sec. 3.2.2) re-
stricted to the current (physical) state of an industrial setting.

For each approach, we identify the input format, i.e., network
packets (P) or aggregated process states (S). We complement this
with information an IIDS operates on, i.e., (i) timing information of
exchanged packets, (ii) knowledge about communication partners
and type of communication, as well as (iii)which values are commu-
nicated, also including the process state. We identify whether addi-
tional packet features are required (e.g., packet lengths), whether an
externally provided process model is required, as well as whether
it trains on anomalous (A) or benign-only (B) traffic. Finally, we list
the number of evaluation scenarios, the number of IIDSs a novel
approach compares to, the intended industrial domain and protocol,
as well as the availability of source code and evaluation dataset.

3.2.1 Communication-based Intrusion Detection. Different streams
of research propose to leverage the inherent communication pat-
terns found across industrial domains. We identify three categories
of how regularities caused by the periodic distribution of, e.g., new
sensor measurements, can be utilized for anomaly detection. First,
irregularities in timings indicate potential malicious activity. Sec-
ondly, the order of message sequences also exposes repeating pat-
terns that can be learned to identify expected normal communica-
tion. Finally, a class of classifier-based approaches grade each packet
as benign or anomalous based on a set of predefined features.

Our analysis shows that all three categories are used across dif-
ferent industrial domains. Analyzing the type of information these
IIDSs operate on, we observe that timing- and sequence-based
approaches mostly rely on just four data types: timing informa-
tion, communicating entities, message types, and often detailed
information about transmitted data. In addition, classifier-based
approaches often incorporate the exchanged values. Rarely do such
IIDSs use further packet features, e.g., packet sizes or checksums
for their classification. Still, none of the approaches take advantage
of protocol-specific information, such that, in theory, they could
be employed for other protocols and scenarios (for Chu et al. [31],
this claim cannot be validated as their automatic feature extraction
approach could potentially result in the use of arbitrary features).

Overall, communication-based approaches are not based on
the particular structure and behavior of the underlying industrial
protocol. Instead, despite IIDSs being tailored to specific proto-
cols, they nearly exclusively use protocol-agnostic information
to detect anomalies. Hence, in theory, virtually all considered
communication-based IIDSs work protocol-independent and show
potential for deployment in a wide range of industrial domains.

However, such potential for protocol-independence remains
mostly unexplored in practice. As a rare exception, Lin et al. evalu-
ate their IIDS [81], checking for irregular timings between similar
messages, for three industrial protocols. Still, they focus on a single
domain (power grids) and thus do not examine generalizability.
Generally, despite theoretical generalizability to other domains and
protocols, communication-based IIDSs are not compared against
each other or evaluated across different domains. Consequently,
researchers cannot determine which IIDSs show the best perfor-
mance and should be used as a benchmark for novel proposals,
improved in future research, or deployed in practice.

3.2.2 Process State-aware Intrusion Detection. In contrast to the
communication-based approaches, process state-aware IIDSs solely
base on (time-)series of industrial system’s physical states. A state
comprises the combined process information of all sensors and actu-
ators aggregated over multiple packets to assess whether a process’
physical state indicates an anomaly over time. Thus, IIDSs from this
category do not rely on packet-specific information and already
naturally abstract from many industrial protocol’s characteristics.
To identify attacks, process state-aware approaches leverage the
repetitiveness and predictability of physical processes, e.g., Pro-
grammable Logic Controllers (PLCs) controlling a pump to keep a
water reservoir’s fill level within certain bounds [39].

While process state-aware IIDSs operate on a more restricted
set of information than communication-based IIDSs, their detec-
tion methodologies show more diversity, which we broadly classify
along four categories. The first category of approaches defines crit-
ical states of an industrial system, e.g., through externally provided
system states by domain experts, and raises an alarm if such a state
is reached. Complementary, the second category of IIDSs attempts
to predict future states based on past observations, raising an alarm
if the behavior significantly deviates from the prediction. The third
category of approaches takes a more local view by investigating
correlations between an individual or a small set of sensor readings
over time, searching for indicators of anomalous activities, such
as outliers from learned clusters. Finally, as for network-based ap-
proaches, a category of approaches train classifiers to distinguish
between genuine and anomalous behavior based on process state.

The majority of approaches are evaluated on public datasets,
but essentially split across merely two datasets (SWaT [50] and
TEP [35]), suggesting an evaluation bias. Only Aoudi et al. evalu-
ate their IIDS [16] on both of these datasets. Thus, our analysis of
process state-aware approaches’ evaluation methodologies again
indicates that most publications neither compare their approach
to related work sufficiently nor evaluate on multiple datasets. This
observation is surprising since process state-aware IIDSs are es-
pecially interesting in terms of transferability, as their underlying
process representation contains information available across many
industrial protocols and domains.
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Anton et al. [14] 2019 RF, SVM P    #   # A/B #  𝑀 1 0 Modbus
Chu et al. [31] 2019 NN P # #  # #  # A/B #  𝑀 1 3 Modbus
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DIDEROT [96] 2020 Decision Tree, DNN P   # # #  # A/B # # 1 0 DNP3
Carcano et al. [21] 2011 Language S # # # #  #  A # # 1 0 Modbus
Almalawi et al. [11] 2014 Outlier detection S # # # #  # # A/B # G# 3 0 Modbus
Kiss et al. [70] 2015 GMM S # # # #  # # B #  𝑇 1 0 –
Pan et al. [91] 2015 Common Paths S  # # #  # # A/B # # 1 0 Modbus, IEEE C37.118
SysDetect [66] 2015 Frequent Itemsets S # # # #  #  A/B # # 1 0 –
Kong et al. [63, 73, 74] 2016 Temporal logic S  # # #  # # B G# # 2 0 –
Adepu et al. [2] 2016 Invariants S  # # #  #  - #  𝑆 1 0 EtherNet/IP
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Hadžiosmanović et al. [53] 2014 Autoregression S  # # #  # # B G# # 2 0 Modbus
Caselli et al. [23] 2015 DTMC S  # # #  # # B # # 1 0 EtherNet/IP
Ahmed et al. [6] 2017 Kalman Filter S  # # #  # # B # # 1 0 –
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3 1 Modbus EtherNet/IP

Choi et al. [28] 2018 Control Invariants S  # # #  # # B  # 1 0 –
Myers et al. [88] 2018 Petri-nets S  # # #  # # B #  1 0 S7
Kravchik et al. [75] 2018 Neural Networks S  # # #  # # B #  1 3 EtherNet/IP
TABOR [82] 2018 TA, BN S  # # #  # # B #  𝑆 1 2 EtherNet/IP
Anton et al. [12] 2019 Matrix Profiles S  # # #  # # B #  𝑆 1 1 EtherNet/IP
HybTester [25] 2019 Hybrid-Automata S  # # #  # # B #  𝑆 1 0 EtherNet/IP
Kim et al. [68] 2019 Neural Networks S  # # #  # # B   𝑆 1 1 EtherNet/IP
Denque Anton [13] 2020 Matrix Profiles S  # # #  # # B #  𝑆 1 0 EtherNet/IP
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SAVIOR [95] 2020 Physical Invariants S  # # #  # G# B  # 2 1 MAVLink

Krotofil et al. [76] 2015 Entropy Analysis S  # # #  # # B # G#𝑇 1 0 –
Alippi et al. [10] 2016 Hidden Markov Model S  # # #  # # B G# # 3 0 –
Aggarwal et al. [3] 2018 Hidden Markov Model S  # # #  # # B # # 2 0 –
Hau et al. [54] 2019 Statistics S  # # #  # # B # G# 1 0 –
NoiSense [4] 2020 Noise Fingerprinting S  # # #  # G# B #  𝑆
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ProcessSkew [8, 9] 2020 Noise Fingerprinting S  # # #  #  B #  𝑆 1 0 EtherNet/IP

Nader et al. [89] 2014 SVDD, KPCA S  # # #  # # B G# # 2 0 –
Junejo et al. [64] 2016 Machine-learning S G# # # #  # # A/B #  𝑆 1 0 EtherNet/IP
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: Power Grid : Water Treatment : Gas : Manufacturing : Medical : Chemical : Water Distribution : Logistics : Synthetic Setup
S: State, P: Packet  : yes,G#: partial,#: no A: Anomalous, B: Benign  𝑆 : SWaT [50], 𝑊 : WADI [7], 𝑇 : TEP [35] 𝑀 : Morris [87]

Table 1: Our survey of 53 intrusion detection approaches confirms the heterogeneity across the industrial research landscape.
While IIDSs operate on few information types, they are mostly developed in isolated silos and seldomly compare to existing
research. Moreover, we observe similar detectionmethodologies across different protocols and domains, indicating an enormous
potential for realizing protocol-independent IIDSs to transfer achievements to a broader scale of industries.
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Figure 2: To achieve protocol independence in IIDS research,
IPAL separates the detection methods from the underlying
industrial network protocolwith an abstract representation.

3.2.3 Meta-analysis of Current IIDS Research. Our analysis of 53
IIDSs confirms our initial observation from Sec. 2.3 that the IIDS re-
search landscape indeed suffers from heterogeneity, and the overall
progress in this research field is thus unnecessarily slowed down.
Further confirming the problem of prevalent evaluation bias, we find
that IIDSs are compared to a median of zero (average 0.38) existing
IIDSs. This phenomenon can partly be explained by the exclusive
use of proprietary evaluation datasets (47 % of the proposals), a
lack of published code or artifacts (75 %), and single evaluation
scenarios (75 %). Similarly, concerning dataset diversity, the median
number of evaluated datasets is 1 (average 1.32), and 52 % (13 of 25)
evaluating on public datasets did so exclusively on SWaT [50].

Laying out a path towards protocol-independent IIDSs as a rem-
edy for current limitations of IIDS research (cf. Sec. 2.3), we observe
that IIDS models do not depend on specific communication proto-
cols but rather on the knowledge of which information is exchanged
at which time between whom. Furthermore, two-thirds (66 %) oper-
ate on a state of the underlying process only, completely oblivious
of how and when this information is exchanged. Thus, our survey
indicates a huge potential for realizing protocol-independent IIDSs.

4 PROPOSING IPAL – AN INDUSTRIAL
PROTOCOL ABSTRACTION LAYER

Given the enormous potential for realizing protocol-independent
IIDSs (cf. Sec. 3.2) and thus capitalize on their manifold benefits (cf.
Sec. 3.1), we set out to turn this vision into reality. To this end, we
propose IPAL, our design of an industrial protocol abstraction layer
to decouple intrusion detection from domain-specific industrial
communication protocols. As shown in Fig. 2, we derive IPAL from
the knowledge gathered in our survey (Sec. 4.1). We discuss how
the landscape of industrial protocols can be transcribed into IPAL
(Sec. 4.2) and how IIDSs implemented on top of IPAL help transfer
their potential to new scenarios (Sec. 4.3). Finally, we discuss the
limitations of introducing an abstraction layer (Sec. 4.4).

4.1 Designing IPAL
IPAL, our design of an abstract representation for industrial proto-
cols, lays the foundation to design and study protocol-independent
IIDSs by unifying industrial communication. During our compre-
hensive survey of IIDSs across various industries and communica-
tion protocols, we identified inherent similarities with regard to the
required data (cf. Sec. 3.2). Leveraging this knowledge, we deduce

IPAL Description

id Unique identifier for IPAL messages within a dataset
timestamp Time corresponding to this IPAL message
length Length of the industrial protocol’s layer
malicious Label for training and evaluation (benign or anomalous)
source Sender of the network packet (e.g., IP and port)
destination Receiver of the network packet (e.g., IP and port)
message type Fine-granular industrial packet’s message type
activity Abstracted message type (e.g., request or response)
responds to List of related IPAL messages this message responds to
process data Arbitrary number of process variables and their values

Table 2: IPAL captures ten features in an abstract represen-
tation to support current IIDSs across multiple domains.

the information captured by IPAL, as shown in Tab. 2. First, process
state-aware IIDSs (cf. Sec. 3.2.2) only operate on a very restricted set
of information, encompassing only timings and information about
exchanged state information. Meanwhile, communication-based
IIDSs (cf. Sec. 3.2.1) operate on a broader set of information but still
only rely on packets with (direct) influence on the physical process,
such that other packets (e.g., diagnostic data or TCP handshakes)
can be ignored. As detailed in the following, ten features suffice to
represent industrial network packets in a common format while
preserving all information required by process-aware IIDSs.

Meta Data. The first observation in our survey regarding the ab-
straction is the incorporation of metadata across all IIDS categories.
Thus, IPAL includes a packet’s timestamp and length. In addition,
a unique identifier (id) is included to disambiguate packets. Since
several IIDSs require labeled training data differentiating benign
and malicious packets, IPAL includes the malicious field.

Addressing Information. Besides meta data, communication-
based IIDSs require features to identify the communicating entities.
Thus, IPAL includes the source and the destination of a single
packet. These fields are arbitrary strings that, in most cases, repre-
sent an IP-port combination, but can be extended, e.g., by adding
Modbus’s unit identifier field, to further disambiguate devices. Like-
wise, destination can remain empty for broadcast protocols.

Message Identification. One relevant aspect found in our sur-
vey is that communication-based IIDSs leverage message types of
industrial packets on different levels of abstraction (cf. Sec. 3.2.1).
Some IIDSs [23, 24] analyze the sequence of specific, reoccurring
messages, and further IIDSs [81] differentiate between requests or
responses. Therefore, IPAL captures a fine-granular message type,
as well as a more generic activity. Here, four activities (re-
quests, commands, and their respective answers) suffice [121], while
the message type closely matches the differentiation schemes used
by the underlying protocols. Lastly, the responds to field lists the
ids of all IPAL packets a given message is a response to.

Process Data. The most important feature used by both types of
IIDSs is the process state. In IPAL, the field process data collects
all process variables as well as their current values as communi-
cated within a single packet. Depending on the transcribed packet,
process data thus can range, e.g., from a single temperature to
an array of sensor readings and actuator commands. As process
state-aware IIDSs demand a snapshot of the entire system’s state,
we support state aggregation over several IPAL messages to realize
a similar extraction as, e.g., through active polling [45].
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A few rare cases exist where additional features (e.g., checksum
validity tests [31]) are included in the decision-making process of
otherwise process-aware IIDSs. These checks are, however, already
covered by traditional IDS (e.g., Zeek [94]) and do not contribute to
information about the physical process monitored by process-aware
IIDSs, and can thus be skipped to avoid redundant work. Conse-
quently, the ten features of IPAL suffice to preserve all information
required by the process-aware IIDSs surveyed in Tab. 1.

4.2 Transcribing Industrial Protocols
IPAL, our abstract representation of industrial network traffic, pro-
mises to decouple process-aware intrusion detection from underly-
ing industrial protocols. Yet, to realize protocol-independent IIDSs,
real-world network traffic must be transferred into this abstract
representation. As shown in Fig. 2, we designed a transcriber [43]
that automates this conversion. While integrating specific indus-
trial protocols into IPAL requires a deep protocol understanding,
this work needs to be performed only once.

We have already incorporated nine industrial protocols (Modbus,
EtherNet/IP, MQTT, IEC-104, DNP3, S7, IEC 61850-GOOSE, IEC
61162-450, and NMEA 0183) used in popular datasets. Thus, future
IIDS research can focus on modeling industrial processes, while a
broad set of datasets from different industrial scenarios is readily
available for evaluation through IPAL [41]. In the following, we
discuss challenges faced while implementing our transcriber.

Most features of IPAL can be directly extracted from network
packets. However, certain protocols require special attention. E.g.,
in ModbusTCP, multiple sub-devices may operate behind a single
TCP connection. Thus, source and destination need to include
not only the IP and port but also the device’s unit identifier. Also,
while Modbus’s function code directly corresponds to the message
type, the activity has to be derived from the traffic direction, as
function codes for requests and responses are identical.

A more challenging aspect is the extraction of the actual process
values from industrial communication because of their encoding.
To this end, transcribers can contain custom rules to extract and
post-process process values from observed communication, similar
to StreamPipes [125]. Such rules are small code snippets that allow,
e.g., to interpret two 16-bit registers (the biggest data type in Mod-
bus) as a single 32-bit float. Thus, we can integrate the necessary
flexibility to define the interpretation of potentially multiple related
variables and even directly annotate the interpreted value with a
more descriptive and human-readable name.

4.3 Developing IIDSs with IPAL
To leverage its benefits, we provide a framework to implement
protocol-independent IIDSs on top of IPAL [42]. We observed in
our survey (cf. Sec. 3.2) that IIDSs are either based on communica-
tion traffic or on the global process state. As shown in Fig. 2, for
communication-based IIDSs, our framework passes each packet to
the IIDS after abstracting it into an IPAL message.

For process state-aware IIDSs, we need to aggregate multiple
packets over time to obtain the current state of the entire process.
Thus, our framework simply caches the process values included
within themost recent IPALmessages.We considered different state
aggregationmethods, but simply outputting themost recent process

values in regular intervals (e.g., each second) yields the best results
and allows us to convert EtherNet/IP traffic included in a newer run
of the SWaT testbed (without attacks) to a state that closely matches
the pre-processed state information provided by the dataset authors.
Furthermore, as some common datasets (e.g., SWaT [50]) already
provide a state representation, our framework optionally allows
restoring these pre-computed states directly.

Our framework enables the realization of communication-based
and process state-aware IIDSs on IPAL messages. IPAL already sup-
ports nine industrial protocols from various domains. Thus, IIDSs
developed for or adjusted to IPAL can be evaluated for various sce-
narios based on current and future datasets, accelerating research
on IIDSs and moving them closer to deployment (cf. Sec. 3.1).

4.4 Limitations of Protocol Abstraction
Any form of abstraction involves the risk of introducing an in-
formation loss, as crucial features may be discarded. In our case,
IIDSs taking advantage of a feature not covered by our abstraction
would likely not be compatible with IPAL. However, considering
that IPAL’s features are derived from an extensive survey of 53 sci-
entific publications (cf. Sec. 3.2), we expect the number of currently
developed IIDSs that cannot be realized on top of IPAL to be low.

Still, our choice of features captured in IPAL could potentially
narrow the scope of future research. However, for dominantly used
datasets, we already observe a restriction in available information
to pre-processed data, e.g., only providing timing and process-state
information (cf. SWaT in Tab. 1), presumably to facilitate easy uti-
lization of the dataset. Contrary to intuition, the adoption of IPAL
could even lead to the availability of more features by encourag-
ing the release of unprocessed packet captures, as IPAL provides
the tooling to easily process raw data according to researchers’
needs. In this vein, the IPAL framework is publicly available [42, 43]
such that the extracted feature set can be extended in the future
if deemed necessary. A similar trend has been observed for Net-
flow [32], whose abstraction revolutionized network monitoring
and introduced newer versions as the need for more features arose.

From a different perspective, protocol abstraction comes with
the potential risk of introducing transcription or abstraction inac-
curacies affecting the final detection performance. Yet, as we show
in the following (Sec. 5), such inaccuracies are generally not intro-
duced by IPAL, and the IIDS performance is independent of the use
of our abstraction layer. Consequently, the value of IPAL homog-
enizing a split-up research landscape far outweighs the potential
drawbacks arising from introducing an abstraction layer (so early)
for the growing industrial intrusion detection research field.

5 PRACTICAL APPLICABILITY OF IPAL
We derived IPAL from the requirements of existing IIDSs and dis-
cussed its theoretical applicability for industrial network protocols.
Now, we complement this viewpoint by showing IPAL’s practical
applicability and correctness by performing a reproducibility study
of eight IIDS approaches from previous work and reproducing their
evaluation results on top of IPAL. Thereby, we also contribute to re-
producing scientific research results as an independent party. While
deemed extremely important [18], this is often a challenging and
tedious task with little reward and thus rarely performed [36, 97].
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Category IIDS Code Dataset Result

Communication Inter arrival time [81] # G# ✓
DTMC [40]  H# (✓)
RF [83]   ✓
SVM [83]   ✓
BLSTM [83]   ✓

Process state PASAD [16]   ✓
Seq2Seq-NN [68]   ✓
TABOR [82]   ✓

 : availableG#: datasetH#: attacks#: no (✓) no comparison to original paper

Table 3:We prove the applicability and correctness of IPAL by
successfully reproducing eight IIDSs on top of IPAL. These
cover all categories from the survey and were selected by the
availability of code and evaluation datasets.

IIDS selection criteria. To conduct a comprehensive repro-
ducibility study, we set out to reproduce at least three representative
approaches for each of the two major categories in our survey (cf.
Tab. 1), covering all features provided by IPAL. Since we re-evaluate
existing IIDSs, we rely on the availability of the original evaluation
dataset or tools for attack generation. Also, as re-implementing
IIDSs from scratch can be challenging, we focus on open source
approaches and only implement IIDSs ourselves if necessary. Thus,
our selection was driven by the availability of code or datasets.

Note that we reproduce evaluation results and thus do not invent
new attack methodologies. This implies that the reproducibility
results are not necessarily comparable, as the authors used fairly
different evaluation procedures. Still, we will show in Sec. 6 how
IPAL enables conducting a side-by-side evaluation of different IIDSs.

In the following, we briefly argue why we selected each IIDS,
summarize its core idea, provide re-implementation and evaluation
details, and compare our results to the original publication. Tab. 3
summarizes our IIDS selection and reproduction results.

5.1 Inter-arrival Time (Communication)
IIDSs from the communication-based category utilize data on a per-
packet basis and consider features such as communicating entities
and message types. An ideal representative for this category is the
inter-arrival time (IAT) approach by Lin et al. [81], which utilizes
periodic traffic patterns in industrial protocols such as Modbus, S7,
and IEC-104 to detect, e.g., packet-injection attacks. To this end, the
approachmeasures themean inter-arrival time, i.e., the elapsed time
between two packets of the same type (e.g., requests and responses),
as well as themaximum temporal deviation (range) between packets
with the same content and checks for timing violations.

As no implementation of the inter-arrival time approach was
available, we re-implemented it based on the paper [81]. To repro-
duce the results, we use the only publicly available dataset from
the original work [81], which evaluates S7 traffic [105]. As only the
attack-free dataset was available, we performed an identical 1/10
train-test dataset split and injected “malicious” packets according
to the authors’ description. Our reproduced results on top of IPAL
(cf. Tab. 4) closely match those of the original paper. We attribute
the remaining differences to randomness and minor implementa-
tion uncertainties w.r.t. to attack generation. Overall, IPAL provides
everything needed to re-implement and reproduce this IIDS.
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Model Metric
Original IPAL

Request Response Request Response

Fl
oo

di
ng Mean TPR 99.90 99.90 99.98 99.97

FPR 0.01 0.20 0.01 0.01

Range TPR 59.10 56.40 68.21 65.48
FPR 0.80 1.10 0.98 1.20

ODR 100.00 100.00 100.00 100.00
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n Mean TPR 96.20 96.60 98.95 98.95

FPR 0.01 0.20 0.01 0.01

Range TPR 100.00 99.50 99.47 99.47
FPR 0.80 1.10 1.01 1.21

ODR 100.00 100.00 97.37 97.37
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n Mean TPR 0.10 0.20 4.60 4.92
FPR 0.00 0.20 0.01 0.01

Range TPR 90.60 91.00 93.69 93.59
FPR 0.80 1.10 0.97 1.28

ODR 99.80 99.50 95.21 95.23
TPR: True Positive Rate, FPR: False Positive Rate, ODR: Overall Detection Rate (in %)

Table 4: Our re-implemented IAT IIDS closely resembles the
original detection rates (cf. Tab. 2 in [81]). Slight deviations
result from minor differences in the attack generation.

5.2 DTMC (Communication)
As an additional communication-based IIDS, we consider an ap-
proach relying on Discrete-timeMarkov Chains (DTMCs) modeling
the sequence of network packets for a single connection [40]. This
approach leverages a core property of industrial networks: Devices
such as PLCs perform several communication steps in series, e.g.,
reading values from remote devices and adjusting setpoints later on,
resulting in periodic packet sequences repeating in similar order.

We adapted the DTMC approach’s publicly available source
code [30] to operate on top of IPAL. While a full reproducibility
study is infeasible without the original dataset, we can still vali-
date whether the original implementation and the version on top
of IPAL produce identical results when presented with the same
input. To this end, we generated our own IEC-104 network trace
using a simulation framework for power distribution grids [56]
and the attack tool by the authors to add equivalent attacks to our
trace [29]. We performed the same procedure as in the original
paper [40], i.e., a 50/50 train/test split, applying the attack tool ten
times for each attack type and counting the number of state and
transition violations compared to the trained DTMC. While not
comparable to the original evaluation, IPAL correctly preserves all
information resulting in identical attack coverage compared to the
original DTMC implementation, as shown in Tab. 5.

5.3 Classifiers (Communication)
Complementing the IAT and the DTMC approach, IIDSs using
machine-learning classifiers may operate on additional information
such as the packet length. Furthermore, they additionally require
traces of past attacks for training. Thus we selected the work of
Perez et al. [83] as a representative for this category. In their work,
they compare three different machine learning algorithms against
each other (Random Forest (RF), Support Vector Machine (SVM),
and Bidirectional Long Short Term Memory (BLSTM)).

Table 3: We prove the applicability and correctness of IPAL
by successfully reproducing eight IIDSs on top of IPAL.
These cover all categories from the survey andwere selected
by the availability of code and evaluation datasets.

IIDS selection criteria. To conduct a comprehensive repro-
ducibility study, we set out to reproduce at least three representative
approaches for each of the two major categories in our survey (cf.
Tab. 1), covering all features provided by IPAL. Since we re-evaluate
existing IIDSs, we rely on the availability of the original evaluation
dataset or tools for attack generation. Also, as re-implementing
IIDSs from scratch can be challenging, we focus on open source
approaches and only implement IIDSs ourselves if necessary. Thus,
our selection was driven by the availability of code or datasets.

Note that we reproduce evaluation results and thus do not invent
new attack methodologies. This implies that the reproducibility
results are not necessarily comparable, as the authors used fairly
different evaluation procedures. Still, we will show in Sec. 6 how
IPAL enables conducting a side-by-side evaluation of different IIDSs.

In the following, we briefly argue why we selected each IIDS,
summarize its core idea, provide re-implementation and evaluation
details, and compare our results to the original publication. Tab. 3
summarizes our IIDS selection and reproduction results.

5.1 Inter-arrival Time (Communication)
IIDSs from the communication-based category utilize data on a per-
packet basis and consider features such as communicating entities
and message types. An ideal representative for this category is the
inter-arrival time (IAT) approach by Lin et al. [81], which utilizes
periodic traffic patterns in industrial protocols such as Modbus, S7,
and IEC-104 to detect, e.g., packet-injection attacks. To this end, the
approachmeasures themean inter-arrival time, i.e., the elapsed time
between two packets of the same type (e.g., requests and responses),
as well as themaximum temporal deviation (range) between packets
with the same content and checks for timing violations.

As no implementation of the inter-arrival time approach was
available, we re-implemented it based on the paper [81]. To repro-
duce the results, we use the only publicly available dataset from
the original work [81], which evaluates S7 traffic [105]. As only the
attack-free dataset was available, we performed an identical 1/10
train-test dataset split and injected “malicious” packets according
to the authors’ description. Our reproduced results on top of IPAL
(cf. Tab. 4) closely match those of the original paper. We attribute
the remaining differences to randomness and minor implementa-
tion uncertainties w.r.t. to attack generation. Overall, IPAL provides
everything needed to re-implement and reproduce this IIDS.
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Table 3:We prove the applicability and correctness of IPAL by
successfully reproducing eight IIDSs on top of IPAL. These
cover all categories from the survey and were selected by the
availability of code and evaluation datasets.

IIDS selection criteria. To conduct a comprehensive repro-
ducibility study, we set out to reproduce at least three representative
approaches for each of the two major categories in our survey (cf.
Tab. 1), covering all features provided by IPAL. Since we re-evaluate
existing IIDSs, we rely on the availability of the original evaluation
dataset or tools for attack generation. Also, as re-implementing
IIDSs from scratch can be challenging, we focus on open source
approaches and only implement IIDSs ourselves if necessary. Thus,
our selection was driven by the availability of code or datasets.

Note that we reproduce evaluation results and thus do not invent
new attack methodologies. This implies that the reproducibility
results are not necessarily comparable, as the authors used fairly
different evaluation procedures. Still, we will show in Sec. 6 how
IPAL enables conducting a side-by-side evaluation of different IIDSs.

In the following, we briefly argue why we selected each IIDS,
summarize its core idea, provide re-implementation and evaluation
details, and compare our results to the original publication. Tab. 3
summarizes our IIDS selection and reproduction results.

5.1 Inter-arrival Time (Communication)
IIDSs from the communication-based category utilize data on a per-
packet basis and consider features such as communicating entities
and message types. An ideal representative for this category is the
inter-arrival time (IAT) approach by Lin et al. [81], which utilizes
periodic traffic patterns in industrial protocols such as Modbus, S7,
and IEC-104 to detect, e.g., packet-injection attacks. To this end, the
approachmeasures themean inter-arrival time, i.e., the elapsed time
between two packets of the same type (e.g., requests and responses),
as well as themaximum temporal deviation (range) between packets
with the same content and checks for timing violations.

As no implementation of the inter-arrival time approach was
available, we re-implemented it based on the paper [81]. To repro-
duce the results, we use the only publicly available dataset from
the original work [81], which evaluates S7 traffic [105]. As only the
attack-free dataset was available, we performed an identical 1/10
train-test dataset split and injected “malicious” packets according
to the authors’ description. Our reproduced results on top of IPAL
(cf. Tab. 4) closely match those of the original paper. We attribute
the remaining differences to randomness and minor implementa-
tion uncertainties w.r.t. to attack generation. Overall, IPAL provides
everything needed to re-implement and reproduce this IIDS.
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Table 4: Our re-implemented IAT IIDS closely resembles the
original detection rates (cf. Tab. 2 in [81]). Slight deviations
result from minor differences in the attack generation.

5.2 DTMC (Communication)
As an additional communication-based IIDS, we consider an ap-
proach relying on Discrete-timeMarkov Chains (DTMCs) modeling
the sequence of network packets for a single connection [40]. This
approach leverages a core property of industrial networks: Devices
such as PLCs perform several communication steps in series, e.g.,
reading values from remote devices and adjusting setpoints later on,
resulting in periodic packet sequences repeating in similar order.

We adapted the DTMC approach’s publicly available source
code [30] to operate on top of IPAL. While a full reproducibility
study is infeasible without the original dataset, we can still vali-
date whether the original implementation and the version on top
of IPAL produce identical results when presented with the same
input. To this end, we generated our own IEC-104 network trace
using a simulation framework for power distribution grids [56]
and the attack tool by the authors to add equivalent attacks to our
trace [29]. We performed the same procedure as in the original
paper [40], i.e., a 50/50 train/test split, applying the attack tool ten
times for each attack type and counting the number of state and
transition violations compared to the trained DTMC. While not
comparable to the original evaluation, IPAL correctly preserves all
information resulting in identical attack coverage compared to the
original DTMC implementation, as shown in Tab. 5.

5.3 Classifiers (Communication)
Complementing the IAT and the DTMC approach, IIDSs using
machine-learning classifiers may operate on additional information
such as the packet length. Furthermore, they additionally require
traces of past attacks for training. Thus we selected the work of
Perez et al. [83] as a representative for this category. In their work,
they compare three different machine learning algorithms against
each other (Random Forest (RF), Support Vector Machine (SVM),
and Bidirectional Long Short Term Memory (BLSTM)).
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original detection rates (cf. Tab. 2 in [81]). Slight deviations
result from minor differences in the attack generation.
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times for each attack type and counting the number of state and
transition violations compared to the trained DTMC. While not
comparable to the original evaluation, IPAL correctly preserves all
information resulting in identical attack coverage compared to the
original DTMC implementation, as shown in Tab. 5.

5.3 Classifiers (Communication)
Complementing the IAT and the DTMC approach, IIDSs using
machine-learning classifiers may operate on additional information
such as the packet length. Furthermore, they additionally require
traces of past attacks for training. Thus we selected the work of
Perez et al. [83] as a representative for this category. In their work,
they compare three different machine learning algorithms against
each other (Random Forest (RF), Support Vector Machine (SVM),
and Bidirectional Long Short Term Memory (BLSTM)).
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Reduction
Type

Anomaly
Type

Copy [%] Remove [%] Swap [%]

0.1 1 10 0.1 1 10 0.1 1 10

none state 0 0 0 0 0 0 0 0 0
transition 0 15.5 38.5 0 2 14 0 20.5 46.6

overlapping state 0 0 0 0 0 0 0 0 0
transition 0 8.5 19 0 1.5 6.5 0 11.5 22

all state 1 1 1 1 1 1 1 1 1
transition 0 9.5 22 0 1.5 6.5 0 13 27

Table 5: Adapting the DTMC approach to IPAL yields iden-
tical detection results in the number of state and transition
validations. We do not show the identical values twice here.

Paper [83] Original [99] IPAL

SVM 94.36 % 94.36 % 96.10 %
RF 99.58 % 99.52 % 99.73 %
BLSTM 98.40 % 98.12 % 96.78 %

Table 6: Measuring the accuracy of the public source code
(Original) resembles the original paper results. Also, on top
of IPAL, we achieve equivalent accuracy most of the time.

For our reproducibility study, we adapted the implementations
of the machine-learning classifiers published by the authors [99] to
operate on top of IPAL. Furthermore, we use the same evaluation
dataset [87], hyper-parameters, and pre-processing steps as in the
original paper [83]. In Tab. 6, we compare the original results of
the paper with our replication of the original evaluation as well as
the same evaluation on top of IPAL. All three approaches perform
equivalently, and the minor deviations can be inferred from ran-
domly selecting a different train and test dataset. Thus, for these
three approaches and the previous two communication-based IIDSs,
we showed that IPAL correctly preserves all relevant information
to achieve equivalent attack detection performance.

5.4 PASAD (Process state)
In contrast to the thus far considered IIDSs, Process-Aware Stealthy
Attack Detector (PASAD) [16] detects structural changes in data se-
ries and thus represents the process state-aware category. PASAD’s
core idea is that legit data series span a vector space, and the dis-
tance to the mean of all training vectors indicates an anomaly.
An alarm is raised if the distance (departure score) exceeds the
maximum observed distance during training (threshold).

Two implementations of PASAD are available, the authors’ ver-
sion in Matlab [62] and a re-implementation in Python [97]. We
realized PASAD for IPAL based on the Python version and used the
original Matlab implementation to generate reference data. PASAD
was trained and evaluated visually on output logs of the TEP [35],
parts of the SWaT datasets [50], and private data of a real water
treatment facility. We verify our implementation on the public TEP
datasets and exemplary discuss one example in Fig. 3. The results
obtained on top of IPAL are identical to the original implementa-
tion [62], and both detect the attack simultaneously. By reproducing
these results, we show that IPAL is able to preserve all information
required by a process state-aware IIDSs such as PASAD.
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Figure 3: PASAD’s original departure scores (yellow, cf. Fig.
4 in [16]) match ours (blue). Both have identical thresholds
of ∼ 0.065 and detect the attack simultaneously after ∼ 3.58h.
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Figure 4: Seq2Seq-NN’s original anomaly scores (yellow, cf.
Fig. 3 in [68]) match our reproduced implementation (blue).
Both implementations emit alarms simultaneously.

5.5 Seq2Seq-NN (Process state)
Extending on the idea of PASAD, the approach by Kim et al. [68]
requires knowledge about multiple actuators and sensors to predict
the expected future states of an industrial system. More specifically,
sequence-to-sequence Neural Networks (Seq2Seq-NN), known from
language translation, are provided with the recent history of system
states (e.g., the last 99 seconds) and predict the next state. Then,
the distance between the predicted and actual state is calculated,
and the error aggregated over time, resulting in an anomaly score.
If the anomaly score exceeds a threshold, the IDS raises an alarm.

For our Seq2Seq-NN implementation on top of IPAL, we adapted
its publicly available version [67], extracted the original anomaly
scores as a comparison baseline, and used the authors’ pre-trained
models for the evaluation on IPAL. We exemplarily compare the
original implementation and the one on top of IPAL w.r.t. their
ability to detect an attack on stage 3 of SWaT [50] in Fig. 4. There the
anomaly score is identical, and the attack is detected simultaneously,
showing IPAL correctly providing all information for Seq2Seq-NN.

5.6 TABOR (Process state)
Complementing PASAD and Seq2Seq-NN, TABOR focuses on one
sensor and models the impact of actuators on this sensor [82]. To
this end, TABOR combines three distinct detection approaches
into one IIDS: An out-of-alphabet check alerts if unseen data or
data out of regular boundaries is observed, a timed automaton
captures the sequence and duration of linear sensor value segments
to enable anomaly detection, and a Bayesian network couples sensor
segments with actuator states to identify unexpected combinations.

We were able to retrieve the implementation of TABOR from
the authors for our re-implementation on top of IPAL. TABOR was
evaluated on the SWaT dataset [50], which was divided into smaller
logically coherent units (models). Here, we concentrate on repro-
ducing model 1 as its intermediate results in the original paper [82]
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Model 1
Original IPAL

FP TP CP PS FP TP CP PS

TABOR 0 9 7.85 1889 0 9 7.09 1765
TA 7 26 87.48 189516 7 26 86.3 188829
BN 0 5 1.95 629 0 5 1.27 504
OOA 0 5 5.90 1260 0 5 5.82 1261

Table 7: TABOR, on top of IPAL, detects the identical nine at-
tack scenarios (TP) with slightly different coverage percent-
age (CP) and penalty scores (PS) (cf. Tab. 2 in [82]).

ease verifying the correctness of our implementation. We achieved
equivalent results for our version of TABOR on top of IPAL (cf.
Tab. 7). Our re-implementation scores are identical in true positives
(TP) and false positives and only deviates marginally within the
coverage percentage (CP) and penalty scores (PS), probably due to
minor temporal deviations in the alarms. We confirmed manually
that the alerts overlap between the original and our implemen-
tation. Concluding, IPAL provides the necessary information to
realize even complex, combined process state-aware IIDSs.

5.7 Summary and Lessons Learned
To showcase the practical applicability and correctness of IPAL, we
performed a reproducibility study of eight IIDSs covering the two
IIDS categories with at least three representatives (cf. Tab. 1). By
(re-)implementing a diverse set of IIDSs on top of IPAL, we have
shown that IPAL provides all information required by various types
of IIDSs. By reproducing previous work’s results, we have shown
that IPAL operates correctly and neither reduces functionality nor
detection rates (cf. Sec. 4.4). Consequently, IPAL provides a reliable
foundation for protocol-independent IIDSs, thus capitalizing on the
benefits of an abstract representation (cf. Sec. 3.1).

As indicated in Tab. 3, successfully reproducing others’ research
requires the availability of the original implementation. Only in
rare cases does an evaluation dataset suffices. While we were able
to successfully reproduce seven IIDS approaches (and even achieve
fully identical results for two of them), we could not reproduce the
evaluation results of the DTMC approach [40] since the evaluation
dataset was not available to us. Still, as the original source code and
attack tool were available, we could use another dataset to show
that our re-implementation on top of IPAL produces exactly the
same results as the original implementation.

While detection performance is of utmost interest, adding ab-
straction layers, such as IPAL, introduces overheads. For a fast IIDS
such as DTMC, we exemplary compared the execution time against
the original implementation. IPAL yields an overhead of just 10.1%
for the benefits of increased applicability. This overhead is expected
to shrink for more complex IIDSs.

Overall, the considered eight IIDSs not only rely on the require-
ments derived from our survey (Sec. 4) but also cover four dis-
tinct protocols (Modbus, EtherNet/IP, S7, and IEC-104) from four
datasets [35, 50, 87, 105]. Besides contributing to the important
task of reproducing scientific research results as an independent
party [18, 36], we lay the foundation to ease the protocol-independent
development, testing, and evaluation of IIDSs by providing a rich
foundation for broad evaluations.

Scenario DoS [20] Advanced [20] MitM [109]

Metrics prec. rec. f1 prec. rec. f1 prec. rec. f1

IAT (mean) [%] 99 100 99 0 0 - 100 98 99
IAT (range) [%] 90 100 95 0 62 1 99 31 47
DTMC [%] 100 100 100 100 95 97 0 0 -

Table 8: IPAL enables the comparison of communication-
based IIDSs in realistic scenarios. We see that each IIDS de-
tects certain attackswell in practice, while other attacks that
should be detectable in theory are not caught.

6 IIDS GENERALIZABILITY STUDY
Our reproducibility study showed that existing IIDSs can be imple-
mented on top of IPAL without loss of functionality or detection
capabilities (cf. Sec. 5). What remains to be shown is that IPAL is
actually useful, i.e., it addresses the pressing problems of current
IIDS research (Sec. 2.3). More precisely, we demonstrate how IPAL
helps to transfer an IIDS to a new industrial protocol, how IIDSs
generalize to new scenarios, how existing IIDSs compare against
each other, and how distinctly communication-based and process
state-aware IIDSs detect different attack types. To this end, we per-
form three case studies (i) for communication-based IIDSs (Sec. 6.1),
(ii) for process state-aware IIDSs (Sec. 6.2), and (iii) combining both
directions of intrusion detection (Sec. 6.3).

6.1 Generalizing Communication-based IIDSs
The first case study demonstrates IPAL’s ability to transfer commu-
nication-based IIDSs to new and realistic scenarios. Therefore, we
study the two approaches IAT [81] and DTMC [40] from our repro-
duction study (Sec. 5). Both were previously not compared against
each other and were evaluated on artificial attacks retroactively
integrated into network traces. Thus, their effectiveness in realistic
scenarios is currently unknown.

To this end, we utilize novel datasets from realistic industrial
systems not yet covered by both IIDSs. The first dataset resembles a
Denial of Service (DoS) attack against a power grid communicating
with the IEC 61850-GOOSE protocol [20]. In the same setting, more
advanced attacks are performed based on a combination of mes-
sage modification, injection, and replaying, comprising our second
dataset [20]. Finally, we look at a Machine-in-the-Middle (MitM)
attack dataset based on ARP poisoning to manipulate the data
within Modbus packets [109]. Note that these datasets already con-
tained these attacks and were specifically designed for evaluating
the performance of security solutions. Our transcriber (cf. Sec. 4.2)
transparently translates the GOOSE and Modbus network traces
into IPAL, obviating the need to modify the existing IIDS implemen-
tations. Tab. 8 summarizes the results on these three new datasets.

DoS.All IIDSs detect the packets injected by the DoS attacks to a
high degree. For the IAT’smeanmodel, these results are expected, as
this attack is similar to the artificial flooding attack evaluated in the
original publication [81]. Surprisingly, even the IAT’s range model
achieves good detection rates, even though it performed worse in
the artificial scenario (cf. Tab. 4). However, the DTMC achieved
the best performance, classifying all packets correctly despite no
similar attack being discussed in the original paper outperforming
an IIDS specifically designed to detect such attacks.
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Figure 5: IPAL allows the side-by-side comparison of three process state-aware IIDSs on industrial datasets and simultaneously
enables to understand how IIDSs generalize to similar (WADI) and new domains (HAI).

Advanced. The second scenario considers advanced data manip-
ulation attacks against a power grid similar to the artificial attacks
evaluated in both original publications [40, 81]. Still, neither of the
IAT models can sufficiently detect these attacks, despite perform-
ing well in the artificial attacks originally evaluated. This behavior
can be explained by the low number of data manipulations and
variable retransmission timings of the GOOSE protocol, leading to
a larger variety of benign inter-arrival times. On the other hand,
DTMC achieves great detection rates, confirming the results from
the original publication in a new industrial domain and protocol.

MitM. Finally, we consider a MitM attack manipulating data
received by industrial controllers [109]. While such an attack is a
realistic threat in practice, it has neither been considered by IAT nor
by DTMC thus far. Still, the IAT’s mean model performs especially
well in this scenario without issuing any false alarm. Contrary,
DTMC is not able to detect a single malicious packet since this
attack does not change the sequence of observed messages.

These results indicate that artificial attacks, retroactively inte-
grated into a dataset [40, 81], do not necessarily carry over to more
realistic attack scenarios, even when considering a similar attack
behavior. Yet, these new attack types can be detected well in some
instances. This observation highlights that IIDSs have to be studied
more extensively to understand which attacks they can detect and
which not. Additionally, our case study highlights that one IIDS
does not necessarily have to be superior in every attack scenario.
Thus, cooperative IIDSs, i.e., several detecting specific attack classes,
may improve overall performance (cf. Sec. 6.3). Finally, we showed
the adaption from one domain or protocol to another scenario,
confirming the enormous potential for protocol-independent and
domain-agnostic IIDSs as previously identified in Sec. 3.1.

6.2 Generalizing Process state-aware IIDSs
Our second case study focuses on process state-aware IIDSs. Since
the generalizability of IIDSs has not been evaluated sufficiently
before (cf. Sec. 2.3), we show how IPAL eases the adaption of IIDSs
to new domains and thus understand how IIDSs transfer to new
scenarios. Furthermore, as Urbina et al. [49] already observed, ap-
proaches are insufficiently compared in the literature. E.g., PASAD
is evaluated only visually [16], while TABOR defines its own met-
rics [82], and Seq2Seq-NN counts an attack as detected even 15
minutes after the attack ended [68] (cf. Sec. 5). Therefore, we evalu-
ate these approaches against each other in a detailed comparison.

From our reproducibility study, we have three process state-
aware IIDSs (TABOR [82], PASAD [16], and Seq2Seq-NN [68]) at

hand, which were all evaluated on the SWaT dataset [50]. With
IPAL, we can apply these to two new datasets (WADI [7] and
HAI [104]). Fig. 5 depicts the alerts of all three approaches on these
three datasets and Appx. A summarizes further in-depth results.

SWaT. We compare the IIDSs on the first stage of the SWaT
dataset, on which they were initially evaluated. Here, we see signifi-
cant differences between the operation of each IIDS. TABOR detects
9 attacks, most of which are captured by Seq2Seq-NN too. Seq2Seq-
NN detects 10 attacks while still having 17 false alarms. PASAD
can detect 6 scenarios, some of which were neither detected by TA-
BOR nor by Seq2Seq-NN. Besides detection performance, we also
notice differences in how these IIDSs emit alerts. PASAD buffers
recent states internally, and Seq2Seq-NN accumulates deviations
over time, delaying alerts for both approaches. Contrary, TABOR
has great precision w.r.t. the attack time, yet alarms are announced
retrospectively due to internal segmentation. Such differentiation
only show in an in-depth side-by-side analysis as enabled by IPAL.

WADI. While the WADI dataset [7] is not unknown (cf. Tab. 1),
none of the three approaches evaluated it. WADI is similar to SWaT,
and we can show how simple transferring these IIDS to a similar
domain with IPAL is again considering the first process stage of
WADI only. Here, TABOR detects 4 scenarios, detects PASAD only 2
attacks and Seq2Seq-NN 8 scenarios. During the training of PASAD,
computational limits were reached due to the larger dataset size,
which might contribute to the lower detection quality. Still, the
initial results of transferring an IIDS to a new dataset with IPAL
are promising without the need to design new IIDSs from scratch.

HAI. After transferring these IIDSs to a similar domain, we now
study how they generalize to other industrial settings. Thus, we
consider the fairly new HAI dataset [104] based on a hardware-in-
the-loop simulator. As some stages of HAI are of a similar domain as
SWaT andWADI, we consider the remaining boiler process used for
power generation. This dataset is much noisier than SWaT orWADI
and less seldomly exhibits clear repetitive patterns challenging all
IIDSs. TABOR does not generalize well, as it flags most parts of the
dataset as an anomaly, while Seq2Seq-NN detects 2 scenarios with 5
false alarms. PASAD also detects 2 scenarios but with far more false
positives (22). Transferring these IIDSs to HAI with IPAL reveals
their unexplored potential to generalize to new scenarios.

IPAL enables a detailed look at how different IIDSs compare
against each other. We even observed how differently IIDSs emit
alerts motivating the use of well-chosen metrics [60]. Besides this
in-depth comparison, IPAL allows to apply IIDSs to new datasets
quickly, and we showed that Seq2Seq-NN indeed generalizes.
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Figure 6:While until now considered as separate research streams, IPAL can pool the detection capabilities of communication-
based (IAT & DTMC) and process state-aware IDSs (PASAD, TABOR, and Seq2Seq-NN), as showcased for theWDT dataset [37].

6.3 Cooperative Communication-based and
Process state-aware Intrusion Detection

As a final showcase, we explore IPAL’s capability to compare com-
munication-based and process state-aware intrusion detection sys-
tems. Currently, both research branches are largely disconnected
(cf. Sec. 3.2), and, as shown in Sec. 6.1, a single IIDS may not per-
form optimally across all attack types, motivating to combine their
potentials even within one industrial scenario. For our study, we
train two communication-based IIDSs (IAT [81] & DTMC [40]) and
three process state-aware IIDSs (TABOR [82], Seq2Seq-NN [68] &
PASAD [16]) on the water distribution testbed (WDT) dataset [37].
What sets it apart from other datasets is that it comprises of net-
work attacks (DoS flooding, MitM to manipulate packet data, and
TCP scanning), as well as, physical attacks (e.g., pump breakdowns)
and is thus well-suited to analyze and compare both IIDS types.

We visualize the results of applying the five IIDSs to the WDT
dataset in Fig. 6 (Appx. B provides further in-depth metrics). Similar
to Fig. 5, alerts raised by process state-aware IIDSs are visualized
as time ranges. In contrast, individual packets flagged as malicious
by communication-based IIDSs are marked with ×. We highlight
the attack types in the dataset with different colors.

Without further tweaks, IAT range and DTMC do not produce
reliable results, as indicated by the continuous emitting of alerts
(in grey). Upon closer manual inspection, these "false" alerts can
be traced back to either a missing communication sequence in the
training data for DTMC or a missing margin of error for a lower-
bound check in the IAT range model. Since these alerts (in grey)
are easily circumventable, we excluded them from the following
evaluation and considered only alerts marked with black ×.

Process state-aware. We expect process state-aware IIDSs to
perform best on the physical attack type since they operate on
aggregated state information (cf. Sec. 3.2.2). Indeed, three out of
the seven attacks detected by PASAD and five out of nine attacks
detected by TABOR are of the physical type. Interestingly, Seq2Seq-
NN does not detect a single physical attack even though it should
be capable of doing so as it analyses the physical state. Meanwhile,
network attacks are covered insufficiently by process state-aware
IIDS, as only attacks directly aiming at physical consequences, such
as some MitM and few DoS attacks, are detected. In total, TABOR
and PASAD detect three MitM attacks each.

Communication-based. Like process state-aware IIDSs, com-
munication-based IIDSs detect MitM attacks, despite not having an
understanding of the underlying physical process. DTMC detects
three MitM instances, IAT-Range five attacks, and IAT-Mean only
two. Another observation is that these IIDSs detect attacks early,

likely even shortly before the attack has a real physical impact
(which is detected by process state-aware IIDSs). Regarding DoS, all
except one instance are detected by IAT and DTMC. Scanning, since
typically considered out of scope for semantic IIDSs (cf. Sec. 2.2 and
Sec. 3.2), is, as expected, hardly detectable by any approach.

Both research branches benefit from each other through IPAL.
Overall, process state-aware and communication-based IIDSs detect
overlapping and contradicting flavors of attack types. Thus, they
complement each other nicely, either to widen the covered attack
types or to realize redundancy for equivalent attacks – better than a
single research branch can achieve on its own. Here, IPAL not only
facilitates the generalization to another dataset but also, for the
first time, enables the interworking of contrary research streams.

7 FURTHER RELATEDWORK
Besides research on IIDSs covered extensively in Sec. 3.2, our work
draws inspiration from different streams of related research. Exist-
ing tools from traditional networkmonitoring, such as NetFlow [32],
lack essential features and are thus not powerful enough for IIDSs.
Furthermore, adapting traditional, rule-based IDSs [94, 100, 107]
to industrial domains [22, 27, 46–48, 122] is also closely related to
our work. These rule-based IDSs, however, only detect traditional
(known) attacks (cf. Sec. 2.2) and thus only complement process-
aware IIDSs that are able to detect even (stealthy) attacks exploiting
physical processes to cause harm [49, 114].

Furthermore, past analysis of IIDSs [5, 49, 90, 114], partially with
a focus on specific domains [34, 58, 65, 84, 98], already describe
problems such as data heterogeneity and evaluation bias in IIDS
research (cf. Sec. 2.3). To analyze the ability of existing IIDSs to de-
tect unseen sensor spoofing attacks, the only reproducibility study
(considering only model-free state process-based IIDSs) known to
us [36] shows significant differences between claimed generalizabil-
ity and reality. These works, in addition to reports on issues with
widely-used datasets [112], motivated us to quantify these problems
and ultimately mitigate them through protocol independence.

The problem of protocol heterogeneity in industrial communi-
cation is not exclusive to intrusion detection. Proposals to address
this issue (e.g., PLC4X [45] and StreamPipes [120, 125]) do, how-
ever, only extract insufficient information for IIDSs and consume
valuable bandwidth through polling, a limited good in many indus-
trial scenarios [17, 118]. Other work in this context is concerned
with the interoperability of devices [52, 69, 77, 127] and proposes
translation between different data representations. We do, however,
expect these related fields to benefit from IPAL in the future too,
e.g., to reduce development costs and improve protocol support.



IPAL: Breaking up Silos of Protocol-dependent and Domain-specific Industrial Intrusion Detection Systems RAID 2022, October 26–28, 2022, Limassol, Cyprus

Lastly, Ryšavý et al. [101] propose a library to ease industrial
network data preprocessing for intrusion detection. Since their
approach requires IIDS developers to implement custom data ex-
tractors for each protocol, this solution does not tackle protocol-
independence, nor does it facilitate generalizability. Still, tomotivate
the library, the authors similarly acknowledge the problem of het-
erogeneity within the IIDS research landscape [101] and likewise
strive to move towards an interconnected IIDS community.

8 CONCLUSION
A growing number of cyber attacks against industrial networks
not only inflict substantial financial and environmental damage but
even put human lives at risk [55]. Intrusion detection is regarded
as a promising complementary protective measure to timely detect
such attacks, which is especially well suited for industrial settings
due to their repetitive processes and predictable network behavior.
Consequently, a large research community gathered around indus-
trial intrusion detection. The produced research advancements are,
however, surprisingly scattered, as many solutions are proposed
for distinct communication protocols in specific industrial domains,
thus hindering their transfer to other industrial domains.

To better understand this phenomenon, we survey 53 scientific
IIDSs and identify an unexplored potential: While practically oper-
ating in protocol and domain-dependent silos, theoretically, neither
do IIDSs operate on the information of certain communication pro-
tocols nor are their fundamental detection methodologies specific
to individual domains. Consequently, there is a huge potential for
protocol-independent IIDSs to protect industrial networks across
scenarios, not only to improve the research landscape but also to
contribute towards widespread real-world deployments.

To unleash this potential, we propose IPAL, our industrial pro-
tocol abstraction layer that decouples intrusion detection from
domain-specific industrial communication protocols. To this end,
IPAL transcribes protocol features relevant for intrusion detection
into a common abstract representation. To show the applicability
and correctness of our approach, we conducted a reproducibility
study of eight IIDSs from related work, proving that IIDSs can in-
deed be implemented on top of IPAL. Finally, with the ability to
transfer IIDSs seamlessly across different industrial protocols and
domains, we studied how existing IIDSs generalize to new scenarios.
We find that existing works are (i) indeed not confined to specific
domains or protocols, but also that (ii) the type of attacks a given
system can detect is not sufficiently studied, thus (iii) motivating
the idea to cooperatively combine approaches from previously dis-
joint detection domains. With our work, we lay the foundation to
break up protocol-dependence of IIDSs research and enable further
studies regarding the generalization and application of IIDSs in new
research or real-world scenarios.
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A PERFORMANCE COMPARISON OF
PROCESS STATE-AWARE IIDSS

In Sec. 6.2, we used IPAL to compare three different process state-
aware IIDSs against each other on the SWaT dataset [50]. To study
their potential to generalize to new industrial domains, we applied
these IIDSs to two new datasets (WADI [7] and HAI [104]). Our
analysis in Fig. 5 depicts the alerts of these three approaches visually,
which provides a decent intuition on how these approaches work
in general. To additionally confirm our observations objectively
and in further detail here, Tab. 9 summarizes different metrics for
all evaluated settings from that case study.

Detected attacks counts the number of scenarios overlapping
with an alarm and false alarms are all alarms not overlapping with
an attack. Penalty score accumulates for all true positives the time in
seconds with regions not labeled as attack within the dataset, based
on the definition by Lin et al. [82]. The remaining traditional metrics
(accuracy, precision, recall, and f1-score) were calculated one by one
for each entry within the evaluation dataset. While these metrics
may be valuable for randomized datasets, they struggle to infer the
quality of time-aware datasets [60], especially since approaches
such as PASAD or Seq2Seq-NN detect attacks with a slight delay.

Dataset SWaT [50] WADI [7] HAI [104]

IIDS S P T S P T S P T

Det. Attacks 10 6 9 8 2 4 2 2 35
False Alarms 17 18 0 6 3 0 5 22 23
Penalty Score 149 9374 1765 153 13177 5792 0 11669 214100
Accuracy [%] 87.71 87.59 88.33 94.29 81.53 82.31 98.46 90.33 26.68
Precision [%] 43.25 49.13 68.71 51.92 5.14 30.05 28.93 0.66 1.18
Recall [%] 4.00 63.90 7.09 13.99 12.60 24.94 4.26 3.79 60.12
F1-Score [%] 7.32 55.55 12.86 22.04 7.30 27.26 7.42 1.12 2.31

Table 9: IPAL enables the comparison of process state-aware
IIDSs Seq2Seq-NN (S), PASAD (P), and TABOR (T) on the
SWaT dataset and in new scenarios on WADI, and HAI.

IIDS Type Process state-aware Communication-based

IIDS S P T IAT Mean IAT Range DTMC

Det. Attacks 2 7 9 6 9 7
False Alarms 3 2 0 2330 3390 59
Penalty Score 58 694 765 3.67 2.48 0.06
Accuracy [%] 73.99 67.32 67.22 75.39 75.39 75.40
Precision [%] 19.44 27.49 30.03 39.25 42.63 80.58
Recall [%] 0.96 17.96 22.41 0.06 0.09 0.01
F1-Score [%] 1.83 21.72 25.67 0.12 0.19 0.02

Table 10: For the first time, IPAL enables the simultaneous
use of process state-aware and communication-based IIDSs.
To showcase the capabilities of both research branches, we
trained representative IIDSs study on theWDT dataset [37].

B COOPERATIVE COMMUNICATION-BASED
AND PROCESS STATE-AWARE IIDSs

In Sec. 6.3, we used IPAL to compare three process state-aware
IIDSs (TABOR [82], Seq2Seq-NN [68] & PASAD [16]) against the
complementary research branch of communication-based IIDSs
represented by the IAT [81] and DTMC [40] approaches. To study
which type of alerts these two IIDS directions detect best, we applied
them to theWDT dataset [37], as it consists of network and physical
attacks. As before, we provide further details by summarizing the
different metrics for this case study (cf. Fig. 6) in Tab. 10.

For a short description of the used metrics, refer to the previous
Appx. A. Note that process state-aware IIDSs alert over time-ranges
while communication-based IIDSsmark individual network packets.
This results in poor performance of all communication-based IIDSs
w.r.t. recall and the F1-score since this type of IIDS emits short alerts
while the metrics favor coverage over the entire attack’s range.
Again, as described in Sec. 6.3, the circumventable false alerts from
the IAT range and DTMC approach (cf. grey annotations in Fig. 6)
are neglected for this evaluation.
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