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Abstract

While the digitization of the distribution grids brings numerous benefits to
grid operations, it also increases the risks imposed by serious cyber security
threats such as coordinated, timed attacks. Addressing this new threat land-
scape requires an advanced security approach beyond established preventive IT
security measures such as encryption, network segmentation, or access control.
Here, detective capabilities and reactive countermeasures as part of incident re-
sponse strategies promise to complement nicely the security-by-design approach
by providing cyber security situational awareness. However, manually evalu-
ating extensive cyber intelligence within a reasonable timeframe requires an
unmanageable effort to process a large amount of cross-domain information.
An automated procedure is needed to systematically process and correlate the
various cyber intelligence to correctly assess the situation to reduce the manuel
effort and support security operations. In this paper, we present an approach
that leverages cyber intelligence from multiple sources to detect multi-stage cy-
ber attacks that threaten the smart grid. We investigate the detection quality
of the presented correlation approach and discuss the results to highlight the
challenges in automated methods for contextual assessment and understanding
of the cyber security situation.
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1. Introduction

To accommodate the increasing penetration by distributed energy resources
(DERs) [1], power grids are currently undergoing fundamental changes [2], espe-
cially digitization, ultimately evolving into smart grids (SGs) [3]. The emerging
paradigm changes within this transition are primarily characterized by inter-
connecting different stakeholders using information and communication tech-
nology (ICT), enabling the remote controllable integration of volatile DERs as
well as novel grid components such as heat pumps and electric vehicles [4], which
SGs can provide a foundation for the realization [5]. However, the increasing
convergence between information and operational technology in the energy sec-
tor [6] is also leading to the emergence of a new threat landscape [7] and thus
new cybersecurity challenges [8].

For active and digitized grid operations, this new threat landscape poses
new risks of incidents [9] that can result in critical disruptive consequences [10].
To accommodate with this new threat situation, mitigation and countermea-
sures must be implemented in a holistic security concept that includes not only
preventive security-by-design approaches, but also detective and thus reactive
measures. In particular, detective measures such as intrusion detection sys-
tems (IDSs), which are designed to detect early indicators of an attack [7], can
be used to monitor the cybersecurity posture of the network [11] and provide the
basis for determining appropriate response and remediation actions [12]. Since
power grids are critical infrastructures whose availability of power supply must
be guaranteed at all times, active and operational restrictive response measures
to detected cyber incidents must rely on highly accurate detection mechanisms.
Therefore, the risk of false-positives in the detection of, e.g., intrusions and
attacks by unauthorized persons into the central monitoring and control sys-
tem within the network perimeter must be avoided. Preventing such intrusions
and attacks is associated with fundamental challenges. In addition, legitimate
components may perform permitted operations within the network, but their
payload semantics lead to network-damaging consequences, possibly from unde-
tected compromise of the component itself. Consequently, it is not sufficient to
secure and monitor the system from the traditional, selective, domain-specific
perspective such as the communication or process level of the infrastructure
that is involved. Rather, in order to gain complete situational awareness of
the system, both the communication and the process data transmitted via the
industrial control network (e.g., measured values and control commands) must
be checked for plausibility and indications of possible attack traces [13] in order
to detect advanced attacks in time.

Timely detecting advanced attacks requires the contextual correlation of
indicators of an attack from different components [14], inspecting different do-
mains of the network [15], in particular process critical data flows [16], and
temporal developments that unfold over time [13]. The management of various
security-related data from different sources is usually addressed with approaches
based on Security Information and Event Management (SIEM) systems that
perform real-time traffic analysis, early detection of attack-related events, and
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event correlation [17]. Combining the traditional approach of using ICT layer
data with utilizing process network data can be used to expand situational
awareness of cybersecurity events in terms of intrusion, propagation, and im-
pact. In particular, due to the static network structure, deterministic traffic,
and physically constrained process information in the process network, there are
particular advantages in detecting valuable attack-related indicators based on
implausible events and anomalies in the process environment [18]. However, the
additional domains to consider when analyzing the cybersecurity situation also
means additional effort to not only correlate cross-domain threat intelligence,
but also manage it efficiently.

To remedy security issues in SGs, different streams of research address the
challenges of automatically analyzing large amounts of cyber threat data. In ad-
dition to preventive security concepts enhancing the network cybersecurity [19]
such as security-by-design principles including, for instance, encryption, access
control and network segmentation [20], detective defense measures are essen-
tial [21] as a complementary part of any comprehensive security concept. This
issue becomes especially evident when considering the large amount of legacy
components in traditional power grids [22] with limited power resources [23],
where security solutions could add a large overhead to their performance and
jeopardize operations. Therefore, passive, non-intrusive countermeasures are
additionally needed in power grid security designs. In particular, an approach
of physical consistency checking at the substation level has been proposed to
validate process data according to a set of constraints, thus noticing when an
individual substation enters a “bad state” that represents, e.g., a physical insta-
bility [13]. Further research aimed to reduce the false positive rate of rule-based
IDS solutions by correlating different IDS events to create attack scenarios and
using machine learning to teach a system which attacks reported by an IDS is
likely to be genuine [24]. Moreover, a trust visualization to help operators in
viewing an ICT network and its nodes was developed [25], including security
concerns at each node, thus providing operators with an overview of a smart
grid and the geographical location of a possible attacker [26]. Using a situa-
tional awareness approach where sensors distributed in the SG relay relevant
information to a command center (similar to a SIEM system), event correlation
and integrity checking can be used to detect complex attacks [27].

Despite these efforts, contextual assessment and reconstruction of security
incidents, especially in SGs, remains a challenging area of research. Most impor-
tantly, limiting knowledge acquisition to events from the same source and not
considering alarms from other security systems or logs from other ICT network
components excludes additional information from different perspectives [28], in-
creases intrinsic bias supporting false-positives [29], and reduces capabilities to
identify potential false-negatives [30]. A limited knowledge base can lead to
limited perception and assessment of potentially wide-ranging cyber incidents.
For threats that impact multiple domains simultaneously, such as SG’s infor-
mation and operational landscape, additional information from domain-specific
knowledge of power grids, combined with cyber threat insights, can enrich detec-
tion. In particular, domain-specific knowledge in the form of validation of data
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point authenticity and integrity, data flow, communication paths and routes,
legitimate operation of assets, and plausibility of data semantics can provide
an additional perspective for a holistic and global view of the cyber-physical
situation.

To address the challenges of detecting multilevel cyber attacks from a holistic
perspective that includes not only the communication level but also the process
level by leveraging domain-specific attributes of attack indicators, we propose
in this paper a framework for context-based cross-domain correlation of various
indicators to enable situational awareness of cybersecurity in SG. To this end,
we present a SIEM-based system for the detection of multi-stage coordinated
attacks (DOMCA) to identify the appropriate attack evolution and strategy.
More precisely, our contributions in this paper are:

1. We present and highlight current cybersecurity issues in SG and appro-
priate countermeasures related to detection mechanisms (Section 2).

2. To identify attack actions at a meta-level, we propose an event correlation
mechanism based on cyber threat observations (Section 3.3).

3. We present and describe a detection method to identify the corresponding
attack strategy based on the detected attack actions (Section 3.4).

4. We demonstrate and discuss the detection quality of our proposed ap-
proach alongside simulated cyber attacks on power grids (Section 4 and
Section 5).

A preliminary version of this paper appears in the proceedings of the 2021 In-
ternational Conference on Smart Energy Systems and Technologies (SEST) [31].
We extend and improve on our previous work in the following ways: First, we
added a dedicated discussion of related work in Section 2.3, where we now pro-
vide a more detailed and broader introduction into the research landscape of
multi-stage attack correlation, specifically discuss the Dempster Shafer The-
ory (DST), and finally derive our problem analysis. Second, we added a for-
mal description of the approach underlying DOMCA’s event correlation in Sec-
tion 3.3 and strategy correlation in Section 3.4. Third, we provide more details
on the methodology underlying our evaluation of DOMCA, specifically w.r.t.
attack modelling and implementation (Section 4.2) as well as evaluation crite-
ria (Section 4.3). Fourth, we extended our presentation of the results of the
evaluation of DOMCA’s classification accuracy to further assess other condi-
tions on detection quality, such as the level of information in the observation
base (Section 4.4) and added a dedicated discussion of the implications of these
evaluation results for the timely detection of multi-stage cyber attacks in SGs
(Section 5). Finally, we generally provide more details on various aspects of the
design, implementation, and evaluation of DOMCA throughout our extended
paper.

The remainder of this paper is structured as follows. In Section 2, we lay the
foundation for this work by discussing cybersecurity-related issues with power
grids and arguing the need for detective countermeasures, before we study the
research landscape in multi-stage attack correlation and describe our problem
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analysis. We then introduce our framework DOMCA for the detection of multi-
stage coordinated attacks on smart grids in Section 3. To evaluate and investi-
gate the performance of DOMCA, we present our investigation procedure, our
attack modeling and implementation and evaluation metrics, as well as our re-
sults in Section 4. Finally, we discuss our results in Section 5 and conclude this
work with Section 6.

2. Cyber Security in Smart Grids

In this section, we present the state of cybersecurity issues in process net-
works while laying the foundation for detection and correlation mechanisms
against security incidents.

2.1. Cyber Security and Power Grids

The exchange of process data and the networking of several stakeholders in-
volved is enabled by the integration of ICT into power grids [32], in which,
for example, measured values from sensors or control commands to actua-
tors are passed between Remote Terminal Units (RTUs) and Master Terminal
Unit (MTU) within Supervisory Control and Data Acquisition (SCADA) sys-
tems [33]. Here, the SCADA system is used to monitor the state of the grid
based on the acquired data and performs a grid safety check to potentially trig-
ger alarms in the event of grid disturbances (e.g., critical load, voltage threshold
violations, power quality disturbances) [5]. In addition, higher-level decision and
optimization functions are utilized for optimal grid operation, such as optimal
power flow calculations to determine appropriate control commands or other
operational decisions [13]. The performance of such an operation is primarily
to optimize the grid state, taking into account stability, resource utilization and
flexibility constraints.

Traditional process networks, which have a clearer separation of IT and
Operational Technology (OT) components, created a “barrier” to unauthorized
third parties due to the isolated, proprietary nature of legacy components and
technologies. The digitization of these process networks through the increasing
integration of ICT is leading to the breaking down of the “barrier” [32], resulting
not only in the interconnection of various network assets and actors [34], but
also in the emergence of a new cyber threat landscape [35]. In particular, cyber
attacks can exploit the new access points, traversable communication paths, and
vulnerabilities [36] to disrupt or damage the power grid [37] by intercepting,
manipulating, and spoofing communications between its SCADA components
on a large scale [38].

For instance, Iran’s nuclear power plant was attacked by a cyber attack called
Stuxnet, which entered the internal control system via removable media and
spread laterally to the corresponding field device of the centrifuges to disrupt the
stable operating point [39]. In addition, a Trojan similar to Stuxnet called Havex
compromised more than 1,000 energy company assets in 84 countries between
2013 and 2014 [39]. One particular cyber incident in power grids occurred in
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2015 and 2016 in Ukraine [40], where bulk power generation plants were the
target of coordinated cyber attacks to disrupt the power supply, resulting in a
temporary blackout for more than 200,000 customers [39].

2.2. Contextual Detection of Cyber Incidents

For the detection of coordinated cyber attacks, dedicated solution for intru-
sion detection is needed, which IDS takes care of automating the process of in-
trusion detection through various approaches [41]. The different approaches can
be distinguished primarily in that they detect either attack indicators based on
normal operation (anomaly-based) [42] or attack signatures (misuse-based) [43]
or their combined knowledge [24]. In doing so, traditional IDSs approaches fo-
cus on monitoring the ICT network [44] and/or its host components (e.g., login
attempts, network scans, suspicious protocol traffic, or syslog) [13] and neglect
the OT components and process semantics of the power grid [45].

Extending detection capabilities beyond local detection of traditional IDS
requires contextual detection based on a SIEM system [46] that combines fea-
tures such as security data collection and consolidation, long-term data storage,
automation of analysis and reporting, and real-time monitoring and correlation
of events from multiple data sources [47]. In this context, dealing with exten-
sive data sources requires efficient data aggregation, collecting log and event
data from various sources (e.g. IDS or firewalls) [48]. Also, normalization of
data to a common format that can also be managed without losing information
or corrupting the fields is required [49] , particularly synchronization of times-
tamps [50], providing comparable and accessible characteristics of the data for
processing and correlation [51]. Subsequently, higher-level inferences can be
made based on these functionalities, such as identifying Command and Con-
trol (C2) infrastructures by identifying compromised hosts in the ICT network,
where either the malicious activity of one host provides evidence that the host
is compromised, or that a compromised host could perform malicious activity
on other hosts that may also be compromised as a result of that action [24].

Multi-stage cyber attack detection requires correlation and inference ap-
proaches that not only classify possible compromised nodes, but also infer fea-
tures and relationships between entities and events on the sequential attack
process by using available information contextually. In particular, hierarchi-
cal unidirectional dependencies between attack steps, their transitions, involved
components, and attack targets within the system can be modeled by attack
graphs [52]. By modeling the graph such that the nodes with multiple succes-
sors or predecessors represent conditional attack stages of an overarching cam-
paign, strategies with multiple different succession paths can be represented via
the attack graphs [52]. In the context of offensive security approaches, this
method requires detailed knowledge of the attacker’s perspective, goals, tactics,
techniques, and patterns, as well as the victim’s network, including system and
security specifications and vulnerabilities [29].. For example, a structural ap-
proach to modeling sequential processes of cyber attacks in a multi-stage manner
can be achieved through the kill-chain modeling concept, which enables struc-
tured modeling of multi-stage attacks aimed at disrupting or destroying vital
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processes or devices [53]. There are several variants of the modeling approach,
with the original approach providing seven steps, including gaining access to and
information about the target system, developing and testing new capabilities on
the compromised targets, exploiting vulnerabilities and moving laterally in the
network, building C2 infrastructure, and performing actions (e.g., disrupting
network operations) [54].

Specifically, following the kill-chain concept [53], a cyber attack would be-
gin with reconnaissance, which consists of observing the target system from
the outside and gathering publicly available knowledge about it to uncover vul-
nerabilities and other useful information. Once enough information has been
gathered, the attack moves to its next phase, which is to enable successful in-
trusion of the target system, for example, by weaponizing an inconspicuous file
to make it usable for initial access to the system, such as a malicious macro
in a document file. Afterwards, to gain initial access to the target system, the
attacker proceeds to deliver the weaponized file to the target via, for example,
a phishing email, exploit identified vulnerabilities, and gain a foothold by in-
stalling malware or modifying existing system functions for C2 and granting
additional access rights via privilege escalation. Based on the established C2
channel to control the infiltrated victim hosts, lateral movements are made in
the target system to decide, e.g., which devices with benefit to the attacker’s
overall goal could be compromised next. After gaining sufficient influence over
the target system, the attacker pursues its goal by conducting a coordinated
cyber attack through the established C2-overlay network to inflict damage on
the system.

2.3. Related Work

In order to explore reliable and accurate methods for detecting cyber at-
tacks, several research efforts have been conducted to address the challenges of
automatically analyzing large amounts of cyber information.

2.3.1. Contextual Detection

The research field of multi-step attack detection methods have been explored
by many works, such that different methods can be categorized, for which we
refer to the corpus of a systematic survey performed by Navarro et al. [55]:

(i) Similarity-based: attack construction based on the degree of similarity
determined from attack indicators (e.g., progressive construction, scenario
clustering, or anomaly detection).

(ii) Causal correlation: assuming a causal relationship between attack actions,
reconstructing a multi-stage attack sequence (e.g., preconditions and con-
sequences, statistical inference, or model matching).

(iii) Structural: incorporating the underlying infrastructure, e.g., the ICT net-
work, possible attack paths are predicted by projecting attack indicators
onto the network model.

(iv) Case-based: based on known and well-documented attack cases, the re-
ceived indicators are mapped to these cases.
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(v) Mixed: combination of the above methods without focusing on a unique
method (e.g., time-window aggregation, offline only correlation, online/real-
time correlation, and/or ontology-based correlation).

In the area of causal correlation and statistical inference, common approaches
to multi-stage attack detection are often based on Hidden Markov, Pertrinet,
or Bayesian network models. One of these approaches, specifically the Bayesian
network model, is used in the work of Kavousi and Akbari [56], which presents
an offline attack pattern detection component and an online alarm correlation
component. After preprocessing the alarms, which reduces the information re-
dundancy, the causal relationships between alarm types from the historical ag-
gregated and preprocessed alarms are correlated with structural constraints to
accelerate the Bayesian learning process. The Bayesian network learning algo-
rithm infers the causal relationships between alarm types using some conditional
independence tests to extract the attack transition patterns.

Another approach bases on statistical inference and mining [57], which in-
cludes a correlation scheme based on a combination of statistical and stream
mining techniques to aggregate alerts based on the similarity of their alert
types, and an episode mining algorithm to determine the possible combina-
tions of alerts. The method works in real time by extracting critical episodes
from sequences of alerts that could be part of multi-stage attack scenarios. A
causal correlation matrix is used to encode the correlation strength between
alert types in attack scenarios.

In the direction of model- and case-based detection, approaches such as the
one proposed by Liang [58] use scenario generation of security-related situations
based on historical data. In particular, this work pursues the development of
a security data collection platform that integrates data from different resources
and in different formats for security scenario modeling. Scenario modeling is
based on data mining of historical data to extract security-related information
such as faults or warnings, which are then clustered into groups with similar
characteristics such as name, reason, impact, and response methods.

Also, in the area of constructing multi-stage attack scenarios, the approach
proposed by Bajtoš et al. [59] uses a method based on similarity-based correla-
tion. Their method consists of aggregating event logs from the dataset into ag-
gregated alerts, computing similarity using source and destination IP addresses
and source and destination network ports, and pattern searching using a corre-
lation matrix to create a directed graph. In this process, alerts are correlated
only if they occur in quick succession in a given time window.

Incorporating correlation processes and semantics, an ontology-based method
[60] can be used to fuse different types of information within the same data
model. Based on a procedure that includes fusion of detected events, their
validation, scenario reconstruction, and pattern mining, attack patterns are ex-
tracted from normalized datasets using an attribute-based induction algorithm.
At its core, the correlation approach is based on a machine learning paradigm,
such as learning from examples, which extracts generalized data from the orig-
inal data, and hypergraph theory, which visualizes the frequent elements to
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identify unknown attack patterns.
Similarly, Ahmadinejad et al. [61] examined the hybrid model method used

to correlate known and unknown attack scenarios. Specifically, the model con-
sists of an attack graph-based method for correlating alerts triggered for known
attacks and a similarity-based method for correlating alerts triggered for un-
known attacks that could not be correlated with the previous component. The
alerts are correlated based on an attack graph, specifically a queue graph, if the
corresponding exploits in the attack graph have a causal relationship.

In terms of prioritizing intrusion alerts and detecting attacks using post-
correlation analysis, ACSAnIA [62] is an approach based on a comprehensive
intrusion alert analysis system. This approach relies on a metric for prioritizing
alerts based on anomalous behavior, which is used for clustering correlated alerts
within a data structure to represent robust attack patterns. Based on a local
outlier factor algorithm for grouping alarms into a meta-alarm that are clustered
into groups, the discovery of similar attack patterns by using frequent pattern
mining with a graph mining algorithm is performed.

Aiming to address the challenge of novel attack techniques that leave no
traces in the victim’s file system and thus provide no artifacts for analysis by
conventional attack analysis mechanisms, Chamotra and Barbhuiya [63] pro-
pose a network of interactive honeypots as a tool for large-scale detection and
collection of multi-stage attacks. Based on interactive honeypots that provide
operating systems and services to potential attackers, a high value of attack
data is collected from real attack situations. Using this data, the authors have
developed a method to characterize the multi-stage attacks using semantically
meaningful attack graphs based on abstracted events to model attacks that
exploit zero-day vulnerabilities.

Using proven taxonomies and categorizing multi-stage attacks via the MITRE
ATT&CK matrix [64], the approach of Takey et al. [65] uses machine learning
for early detection of multi-stage attacks in an online process. The authors use
a runtime engine that reads process events from the Windows operating sys-
tem to determine if the executable is malicious, and extract the features from
the static binary and pass them to machine learning for malicious executable
detection. The machine learning model takes the features as input and labels
the executable as malicious or benign, detecting the case that an executable
is malicious by predicting the phases the malware executes during the attack
according to the MTIRE ATT&CK matrix.

Other research in the direction of inductive/deductive correlation such as
the work of Moya et al. [66] proposes an approach based on indexing potential
hostile behavior as part of a coordinated attack on the monitoring and con-
trol data flow in the process network and storing the generated indexes in a
knowledge base. The correlation of attack indicators is based on an induction
and deduction algorithm, where attack consequences are first computed by the
induction algorithm based on the corrupted measurements and then further pro-
cessed by the deduction algorithm to determine the attack indicators that are
causal related to the consequences. Based on the processed attack indicators,
the knowledge base scans and reasons the indicator in the database to calcu-
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late suitable defense strategies. The proposed correlation method focuses on
monitor-control data, while multi-stage cyber attacks in their phases of intru-
sion, lateral movement, and C2 are not considered and thus are not part of the
attack evolution detection.

Taking a different perspective, the work of Ten et al. [67] follows a model-
based correlation using attack trees for impact analysis, leveraging probabilistic
measures such as vulnerability index to account for attempted intrusion and
policy enforcement. The modeled attack tree includes advisory objectives and
cybersecurity conditions that represent the likelihood of successful compromise
given technical countermeasures and password policy enforcement. Attributes
of the assessment in the proposed approach are primarily port auditing, which
computes the risk level of compromise based on the port policy, and, by analogy,
password strength assessment, which is determined by the total combination of
character types and their length. Considering a broader view of cyber attacks
and potential propagation behavior, the correlation method in this paper em-
phasizes port auditing and password policy enforcement, while polymorphic
attack vectors are not normalized to established attack catalogs such as the
MITRE ATT&CK matrix.

Based on a decentralized architecture, Appiah-Kubi et al. [68] propose a
four-phase method for detecting coordinated attacks and proposing counter-
measures using a collaborative correlation approach. The first two phases are
characterized by the continuous monitoring of the network state by the placed
network-based IDS and the sharing of the observation in a multi-agent com-
munication layer via a link-drop-max-consensus protocol in the last two phases
(sharing the maximum value among agents without repeating already shared
information). Within the distributed architecture, each agent is designed to
predict the confidence level of the recommendation’s target node based on at-
tack patterns (weighted average of metrics that correlate protocol patterns), the
criticality of the node’s load (criticality indices according to a lookup table), and
software correlation (measures the extent to which the reporting node’s affected
device is related to that of the receiving node). However, when introducing a
collaboration-based correlation method, the proposed approach is limited to de-
tecting a finite set of specific attack vectors and neglects the multi-stage attack
correlation of complex attack sequences.

Finally, the work of Aparicio-Navarro et al. [69] addresses the challenge of un-
certainty in the correctness of alerts and other security-related information and
has developed a detection method based on DST [70]. Based on the combined
use of different metrics from multiple layers of the protocol stack to perform
detection, DST is used to fuse the evidence provided by the metrics [71]. In
particular, a fuzzy cognitive map (prediction and decision making process) is
integrated to incorporate the contextual information into the recognition pro-
cess by providing the appropriate adjustments to the DST belief values assigned
before the data fusion process.
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2.3.2. Dempster Shafer Theory

Dempster Shafer Theory (DST) is seen as a generalization of traditional
Bayesian probability theory [70], making it possible to assign a probability to
sets of statements rather than individuals. This allows the combination of evi-
dence from multiple sources without a priori knowledge, i.e., a priori probability
distributions, about system states [72]. While traditional probability theory en-
forces that the unknown probability is uniformly distributed and assigns a value
in the interval [0, 1] to each possible combination, DST uses lower (belief func-
tion) and upper (plausibility function) bounds to support the hypothesis, which
allows quantification of the unknowns by determining the confidence level that
a given sequence of evidence is correctly interpreted [24]. The definition of a
belief and plausibility function depends on the frame of discernment and the
mass distribution function. Subsequently, the frame of discernment, denoted θ,
is defined as the set of disjoint hypotheses of interest, denoted x. In this regard,
the mass distribution function is defined as m : 2θ → [0, 1], where m distributes
the belief over the power set of θ and has the following properties:

(i) ∀x ⊆ θ : m (x) ≥ 0
(ii) m (∅) = 0
(iii)

∑
x⊆θm(x) = 1

Based on these definitions, we obtain the belief of a hypothesis x as the sum of
the masses that are a subset of x, i.e., Bel (x) =

∑
y⊆xm(y), where x ⊆ θ, thus

Bel (∅) = 0, Bel (θ) = 1. The belief function Bel (θ) can be seen as a measure
of confidence that a hypothesis is true given a set of evidence. Accordingly,
the plausibility function Pl (θ) represents an upper limit of our confidence in a
hypothesis, i.e., Pl (x) =

∑
y∩x 6=∅m(y), where x ⊆ θ, thus Pl (∅) = 0, P l (θ) =

1. The actual probability Pdst(x) is contained in the interval [Bel (x) , P l(x)],
thus the distance γ = |Pl (x)−Bel(x)| describes the uncertainty regarding the
hypothesis x. If γ = 0, then the probability Pdst(x) determined using the DST
corresponds to traditional probability Pbayesian(x).

One of the challenges of alert correlation is the missing basis of data for
the probability quantification of an attack. Because of that, assigning a priori
probabilities to attack indicators is infeasible. Therefore, without being able
to quantify the unknown, the alert correlation would be inaccurate, because
the impact of events, i.e., the probability that an event indicates an attack,
could not be quantified. While other theories can handle epistemic uncertainty
such as Subjective Logic [73], Fuzzy Logic [74], and Possibility theory [75], DST
has the advantages of a high degree of theoretical development and its relation
to traditional probability theory. What further sets DST apart from other
approaches, is its ability to combine evidence from multiple sources.

To determine the joint mass function of two independent mass distribution
functions m1, m2 on the same frame of discernment, the basic DST combination
rule can be used, which is defined as

m1,2 (C) =

{
1

1−K ·
∑
A∩B=C m1 (A) ·m2 (B),when C 6= ∅

0,when C = ∅
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where
K =

∑
A∩B=∅

m1 (A) ·m2 (B)

K is also called conflict. It is the sum of the masses of all conflicting evidence.
The basic DST combination rule assumes independent evidence and may per-
form poorly when severe conflict is present.

Combining evidence from multiple sources depends on different types of evi-
dence, considering consonant evidence, consistent evidence, arbitrary evidence,
and disjunctive evidence [72]. Consonant evidence means that over time ob-
tained information progressively narrows or refines the scope of the evidence
set, while consistent evidence means that at least one common element to all
subsets exists. Arbitrary evidence means there is no element common to all
subsets, while disjunctive evidence means that any two subsets have no ele-
ments in common with any other subset. Each of these possible configurations
of evidence from multiple sources has different implications for the degree of
conflict associated with the situation, where, for example, in the case of disjoint
evidence, all sources provide conflicting evidence. Here, K represents the base
probability mass associated with the conflict, which is determined by summing
the products of the base probability assignments of all sets whose intersection
is zero. In addition, the operation of combining evidence from multiple sources
also depends on the situation of how the sources are considered in terms of reli-
ability, using, for example, a conjunctive combination operation for considering
all evidence as reliable, a disjunctive combination operation for limited reliable
evidence, or a compromise between the previous two combination rules. Since
C is defined as an appropriate measure of the intersection between evidence A
and B, it can be considered as the degree of agreement between the evidence to
be combined.

The combination rule can also be viewed as a aggregation method for data
fusion to rationally combine and simplify information from independent and
diverse sources, ignoring any conflicting evidence through normalization. Any
two mass functions associated with the evidences A and B over the same frame
of discrimination with at least one common focal element can be combined into
a new mass function of C using the DST combination rule. The assumption
of independent evidence in IDS, i.e., independent IDS sensors and independent
IDS sensor alerts, generally does not hold.

Consider two alerts A1 and A2 issued by the same sensor. A1 gets triggered
by an intercepting attack such as Man-in-the-Middle (MITM) attack listening
in on network communication and establishing connections. A2 gets triggered,
because the MITM successfully attacked ongoing communication and now tries
to actively take part in the network. Not only are A1 and A2 issued by the same
sensor, but A2 is also caused by the same activities that caused A1. Therefore,
the two alerts are not independent. Another example that illustrates the issue
with conflict in the basic DST combination rule is given by Zadeh [76]. Suppose
two inspectors A and B independently evaluate the same situation. Inspector
A thinks that it is likely a case of xA, with a probability of 0.99, or a case of
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xC , with a probability of 0.01. Inspector B believes it to be a case of xB , with a
probability of 0.99, or a case of xC , with a probability of 0.01. Here case xA and
xB are in conflict with each other. Applying the basic DST combination rule
would lead to a probability of 1.0 for case xC because of the conflict between
case xA and xB , leading to the rejection of both cases. For these reasons,
the application of pure DST has been criticized and a plethora of modified
combination rules have been proposed and analyzed.

2.3.3. Problem Analysis

As described in Section 2.3.1, a broad range of different approaches exists to
detect multi-stage cyber attacks in SG. Addressing the challenge imposed by
knowledge acquisition limitations requires consideration of methods for fusing
heterogeneous data from disparate sources. Not considering potential knowl-
edge from other domains and process limits the extent to which a potential
incident may be understood and assessed. Thus, when detecting complex at-
tacks with data from multiple sources, additional information such as process
and topology information from power grids enriches detection by providing a
more coherent and global view of the current situation to interpret and infer
complex suspicious activities at the system and component level. The chal-
lenge here is the transferability of different information to create a knowledge
base that can be used not only to link cyber-threat traces to infrastructure but
also to identify the attack campaign itself. Many of the related work relies
on manually coded knowledge of multi-stage attacks and thus includes human
error in the development of signatures. Moreover, related work proposing ap-
proaches to detect coordinated cyber attacks is typically limited to selected
phases and attack vectors such as MITM, Denial-of-Service (DoS), and replay,
and neglect the dynamic and polymorphic behavior of propagating cyber at-
tacks in the phases proposed by MITRE ATT&CK Matrix. It should also be
noted that many research papers only work with limited attack datasets such
as the DARPA 2000 dataset [77], in which the models presented correspond
to the same attacks and do not include many different examples of multi-stage
attack models. Furthermore, overly strict context-specific approaches with lim-
ited generalizability necessitate a comprehensive and rich knowledge base that
covers multiple instances of the same cyber incident with minor differences.
This includes taking into account the polymorphic characteristics of attackers,
who often do not execute their steps sequentially with the same techniques but
perform their steps interchangeably with different techniques. Thus, detecting
newly deployed adversary techniques in the context of a multi-stage cyber attack
also requires understanding the overall end-to-end activities performed during
the attack and, consequently, the targeted strategy. Identifying the appropriate
attack strategy requires situational awareness not only in IT but also OT in the
operational environment. The understanding and concept of situational aware-
ness [15] is very similar to the concept of contextual awareness targeted by this
work. In this work, we aim to discuss the design and subsequent implementation
of DOMCA, which performs the correlation of distributed security information
to reconstruct a potential cyber incident.
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3. SIEM-based Detection of Multi-stage Coordinated Attacks

In this section, we present the architecture and overview of our SIEM-based
attack detection system DOMCA. A difficult aspect of correlating cyber threat
information and process data is accounting for false positives, particularly deal-
ing with the reliability and certainty of evidence within traditional probabilistic
correlation approaches [24]. Traditional probabilistic approaches do not con-
sider the issue of certainty in assigning simple probability values to statements
or conclusions based on unreliable data [24]. To account for the certainty of
the data, and thus to model the confidence level of the conclusions on an ap-
propriate quantification basis, a method is needed that extends the capabilities
of traditional Bayesian probabilistic methods. In particular, quantifying prob-
abilities in data that lacks a comprehensive database from real-world cyber
incidents due to security or privacy concerns presents additional challenges in
dealing with data without considering certainty. Therefore, assigning a priori
probabilities for attack indicators in the form of confidence values is not feasible
without considering certaintye [24]. To address this issue, theories that deal
with epistemic uncertainty can be used, such as DST (cf. Section 2.3.2) [72].
In the following, we present the architecture of DOMCA to detect the corre-
sponding attack evolution and strategy based on domain-specific attribution
and contextual correlation of cyber incident indicators using DST.

3.1. Framework Overview

The core concept of our framework pursues the goal of reconstructing the
propagation behavior and intended strategy of the cyber attack based on the
observation and structural modeling of the attack (cf. Figure 1). DOMCA
digests indicators captured by the pre-processing component from distributed
sensors that contain domain-specific information about the process, communi-
cation, and operational semantics of the attack actions represented in the attack
behavior. This involves normalization processing of the attack indicators within
pre-processing component (cf. Section 3.2). In this work, for simplicity, it is
assumed that different outputs from multiple source of monitoring logs and at-
tack indicators are generated within the distributed IDS sensors. Furthermore,
a central architectural framework at e.g., the operations center level or dedi-
cated cybersecurity centers such as security operation centers) is envisioned to
increase situational awareness at a more global level. The issue of “single point
of failure” and increased attack surface due to the central architecture can be
addressed by a persistent and secure communication layer, e.g., a distributed
ledger communication layer connecting the sensors and the central correlation
framework. In particular, a hybrid architecture [78] can be developed based
on distributed and centralized design principles [79] combined with other secu-
rity mechanisms, such as the “moving target” approach [80], which addresses
the issue of the “single point of failure” and the lack of global context of the
situation. Since the architectural design concept is outside the scope of this
paper, this concept will not be discussed in detail in this paper. After the pre-
processing component, the Event Correlator (EC) determines possible attack
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actions based on the pre-processed attack indicators by using custom combina-
tion rules of DST in the context of a given set of known possible actions that
an attacker could perform (cf. Section 3.3).

The process of identifying all potentially performed attack actions is then
followed by Strategy Correlator (SC), which performs the analysis of identifying
possible paths in the context of known attack graphs based on DST combi-
nation rules. In the context of SC analysis, the consideration of the assigned
mass values of the detected attack action and the edges of the attack graph is
part of identifying feasible attack strategies based on the current observations
(cf. Section 3.4). Following the correlation process, the kill-chain identification
component is triggered to perform the analysis to determine the most likely at-
tack path and the corresponding graph based on the SC results. In this step, the
corresponding kill-chain step associated with the identified attack path struc-
ture is determined (cf. Section 3.5). The modularity of this approach enables
transferability to other domains characterized by the architecture of industrial
control systems (cf. Section 3.6). After the generated attack actions, graph
and path, the post-processing component performs comprehensive visualization
and higher-level processing of the result (cf. Section 3.2). A simplified overview
of the core components and their functionalities is shown in Figure 2. In the
following sections, the design of the above process is presented and discussed in
more detail.

3.2. Pre-Processing

The goal of the pre-processing component is to digest various security-related
information from different sources and convert it into a format that is normalized
and processable by the other components of DOMCA.

Table 1: Domain-specific attribution of alarms within events.

Fields Description

IoC Participation in an attempt to access a
host.

ADR_FROM_CHECK Suspicious source of the message.
ADR_TO_CHECK Suspicious destination of the message.
CON_CHECK The connection over which the packet was

sent is not allowed.
DP_FROM_CHECK The packet contains data points that are

unexpected for the source host.
DP_TO_CHECK The packet contains data points that are

unexpected for the receiver host.
CYCLE_CHECK A message that normally arrives cyclically

deviates from its schedule.

A significant part of the security-related information in the context of this
work is data from distributed specification-based IDS within the process net-
work, which provide alerts as well as deviations from the normal characteristics
of the system. In particular, the deployed sensors are placed within selected

15



Figure 1: Structural overview of the presented kill-chain-based correlation and detection sys-
tem for contextual detection of multi-stage cyber incidents.
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Figure 2: Simplified overview of the core EC, SC and kill-chain identification components and
their functionalities.

network locations (e.g., SPAN port of switches or network taps), on which basis
the traffic is analyzed using the domain-specific attribution according to Ta-
ble 1. The sensors perform a series of checks where, in the event of a failed
check, an alarm is triggered containing the security-related information about
the failed check such as check criteria, event information, and packet specifica-
tion. Specifically, the information relates to the payload of the packet causing
the test failure, the payload type (e.g., command, measurement, monitoring,
IT, and OT payload), the timestamp of the alert, protocol-related packet infor-
mation, monitored ICT edge endpoints, and the ID of reporting sensor. These
are then consolidated by looping through all packet events to find clusters of
events sent at the same time along with the same ICT network edge, represented
by a single alert containing the common information. Furthermore, based on
the unique sensor identification, the pre-processing component can construct
globally unique event IDs by combining the IDs of each packet with the corre-
sponding sensor that reported the event.

An important part of pre-processing is also the identification of consistent
communication paths forming traversable messaging routes message multiple
hosts (IT and OT components) involved in the cyber attack. This is mainly
reconstructed by topological and chronological mapping of packet events based
on the timestamps and topology of the monitored network. In this context,
sensor coverage and placement play a critical role, potentially affecting detection
quality. However, some of the missing information due to missing sensors can
be compensated by deduction based on consistent connectivity in the network,
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the degree of sensor coverage, topological relationship between sensors, and
marginal temporal differences of events between pairs. To illustrate this issue,
we assume that the last destination node of path p and the start node of path
q are connected by an edge within the ICT network. As p was received before
q was sent, and the timestamp difference is within marginal thresholds, it is
not necessary to equip the edge between the end of p and the start of q with
a sensor. Then, the identified pairs are consolidated by combining data from
other stored pairs, forming new paths by concatenating their host paths and
failed security checks. Finally, the component clusters the pre-processed events
based on the constructed paths and returns them in the format of Table 2.

Table 2: Normalized output format of the pre-processing component.

Fields Description

EVENT_ID List of event IDs assigned to this mes-
sage path.

SEND_TIME Sending time of the original responsible
host.

RECEIVE_TIME Receiving time of the last destination
host.

FROM_HOST Host responsible for the message.
PASSED_HOSTS Hosts that the message passed through

on its way.
TO_HOST Final destination of the message.

3.3. Event Correlator

In this section, we introduce the EC, which aims to draw conclusions about
the likely attacker actions in chronological order based on the pre-processed
data. Based on the results of EC, the SC can use the result to identify the
attack strategy. In Table 3 we provide an overview of exemplary abstracted
cyber attack actions used to form the action set. We have categorized the actions
according to the kill-chain concept [53], where the attack actions reflect the steps
of reconnaissance, weaponization, delivery, exploitation & installation, and C2
communication. Another part of the normalization process is the mapping of
alerts and security-related logs to the established and defined attack actions of
the MITRE ATT&CK matrix [64], especially for industrial control systems [81].

The initial analysis of EC begins by identifying suspicious behaviors of po-
tentially infected hosts based on inferences from frequently occurring suspicious
events that do not indicate compromise with certainty, such as. (e.g., scanning
other nodes’ ports, sending packets over unauthorized connections). It is impor-
tant to note that, in this work, suspicious detected packets are part of the alert
or attack indicator portfolio of lower-level IDS sensors, some of which are also
assumed to have the capabilities of well-established network-based IDS such as
Snort [82]. As part of this process, the EC also pursues the goal of determining
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Table 3: List of abstracted cyber attack actions considered within DOMCA.

Action Description

Network Access At-
tempt

attempt to gain user and, if possible, root
access to a host by accessing it over the
simulated ICT network.

Offline Access At-
tempt

attempt to gain user and, if possible, root
access to a host by accessing it through of-
fline means (e.g., compromised removable
media).

Host Discovery find other hosts on subnets adjacent to a
compromised host with at least user access.

Malware Installation install malware on a compromised host
with root access.

Instruction Request malware-infected host asks a C2 host for
instructions.

Send Host Info to C2 sending information about an infected host
to a connected C2 host.

Send Host Info to
Host

sending information about an infected host
to another infected host.

Victim Communica-
tion

other communication between infected
hosts.

the position of a potential C2 coordinator. To perform this identification pro-
cess, the C2 coordinator is assumed to be characterized as the host from which
significant suspicious messages emanate, allowing the structure of the infected
hosts’ communications to be considered as part of the detection. After potential
C2 coordinators are identified, the EC determines individual attacker actions,
such as an attempted host access (e.g., to RTU), which may be characterized
by an exploratory activity, such as a network scan that identifies vulnerable ser-
vices on the host, followed by an exploit activity, such as a suspicious login or
attempted privilege escalation. Host access attempts are identified based on the
listing of the detected access attempt indicators (e.g., network scan, attempted
or suspicious login, privilege escalation). The collection of indicators associated
with the access attempt is then sorted chronologically, grouped by network host
target, and combined into pairs of source and destination hosts in accordance
with the detected Indicator of Compromise (IoC). At the end of this process,
mass functions are assigned to the potential access attempts. In particular, the
mass function is used here as the weight of interest of the observation in the
context of the access attempt action, taking into account for the evaluation the
type, the time of occurrence and the context with other related access attempts.

Furthermore, we distinguish between local or remote attempts based on the
length of the source-destination pair list and the identity of the endpoints. Based
on the identified access attempts, network-based access attempts are identified
by determining which infected host first attempted to infiltrate another host
based on a list of source-destination pairs. This includes detecting a possible
malware installation on likely infected hosts, such as a compromised RTUs, by
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inferring possible actions from the temporal correlation of access attempts and
the occurrence of suspicious messages sent by the targeted host. It is possible
that the infected host does not immediately request commands from the C2
host after malware installation, but lays low to explore the environment or wait
for incoming commands (e.g., RTUs waits for a control action to manipulate
data). Detection of these cases can be based on observation of messages that
violate acceptable connection paths (e.g., servers outside the process network),
combined with observation of C2 hosts sending messages to suspicious hosts
after malware installation.

Another interesting attacker action is the communication-dependent behav-
ior of suspicious or compromised hosts (e.g., to gather information about the
infiltrated network). For this detection, all pre-processed data associated with
suspicious communications from potentially infected hosts is taken into account.
For example, an interesting indicator is communication activity that is not part
of access attempts or direct C2 communication, but bilateral communication
between compromised components, especially if the communication paths are
atypical (e.g., horizontal communication between RTUs). The mass functions
assigned in the pre-processed data are used to derive the reliability of the de-
tected attack. To account for the predominance of high confidence values in
the mass function combining different pieces of evidence, a maximal mass dis-
tribution value is defined that contains the highest possible confidence that the
EC can assign to an action after the initial assignment. A critical requirement
for correlation is to also account for the possibility that false positives result
in single alerts being held responsible for multiple actions that indicate non-
legitimate associated actions. To deal with this conflict, each time an action is
created, the EC checks whether any of the alerts involved in its creation have
already been involved in another action to reduce the mass of the new action
accordingly.

The combination of evidence using DST has to handle dependencies and
conflicts between evidence. Thus, the need for a modification of the standard
DST combination function arises. Therefore, Zhang’s combination rule [72] is
used to combine mass distributions of different statements as additive evidence.
Zhang’s center combination rule can handle mutually dependent evidence by
first calculating the intersection of A and B, i.e., given evidences A and B with
mass functions m1 and m2:

m1,2 (C) = k ·
∑

A∩B=C

|C|
|A| · |B|

·m1 (A) ·m2 (B)

where k is a normalization factor that normalizes the sum to 1. For handling
conflicting evidence, the logarithmic robust combination rule (RCR-L) [83] is
used. Let evidence A and B have a conflict K, then functions α and β on K
are given by

α (K) =
log[(1 + λ)

K · (K+λ)1−K

λ ]

log[ (1+λ)λ ]
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and

β (K) =
log[ (1+λ)

(K+λ) ]

log[ (1+λ)λ ]

where λ is a parameter in [0, 1] that is higher for lower cardinalities of θ. Given
the evidence A and B with mass functions m1 and m2, and functions α(K) and
β(K), the RCR-L combined mass function is defined as

m1,2 (C) = α (K) ·m∪ (C) + β (K) ·m∩(C)

where
m∪ (C) =

∑
A∪B=C

m1 (A) ·m2 (B)

and
m∩ (C) =

∑
A∩B=C

m1 (A) ·m2 (B)

Within this framework, the two different combination functions are utilized as
follows: Zhang’s center combination rule is used for handling mass functions of
interdependent evidence and RCR-L for handling mass functions of conflicting
evidence. The significance of the combination rules can be illustrated by Zadeh’s
example (cf. Section 2.3.2), where K ≈ 1 results in α(K) ≈ 1 and β(K) ≈ 0 that
leads to a probability of 0.01 for the case xC where the maximum mass is 0.81
assigned to the focal element (xA, xB). The positive reinforcement of belief in
the singleton xC induced by RCR-L compared to the conjunctive rule such as the
basic DST combination rule is insignificant in this case. Additionally, if multiple
actions rely on the same alert, their current mass will each be combined with an
“impact mass” mnegA that represents the negative impact that this has on their
legitimacy (e.g., indication of legitimate but compromised RTUs). This impact
mass has the properties mnegA({t}) = 0, mnegA({f}) = µ and mnegA({t, f}) =
1 − µ, with µ defined as a threshold belief that is higher than uncertainty.
In doing so, the value of µ must be chosen to balance high confidence in the
statement with allowing further combinations and processing without quickly
becoming too overconfident. In particular, the selection of µ takes into account
that µ ≥ 0.5 represents the belief in the statement, which is higher than the
uncertainty. Therefore, certain values for µ in the range of z ≤ µ ≤ 0.5−z should
be chosen to balance the high confidence in the statement with the possibility
of further combination and processing without quickly becoming too uncertain.
For example, assuming a high alarm rate in the target system and a possible
false positive rate, selecting µ with z = 0.2 results in a range of [0.2, 0.3] that
provides enough flexibility to combine expected alarms. Thus, calibration runs
in the target system can be automated with representative operation of the
alarm output to select µ accordingly. If more than one alert referred to within
the construction of the action had already been used, mnegA is applied again to
the combination result as many times as there are such alerts. The EC finally
outputs a list of attacker actions with associated confidence values, timestamps,
and affected hosts for a preconfigured time horizon.
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3.4. Strategy Correlator

After identifying the likely attack actions that have occurred by the EC,
incorporating the potential list of infected hosts and the C2 host, the SC begins
identifying potential attack strategies based on this that match the observations.
The SC performs this analysis using predefined attack graphs that represent
different attack strategies and include potential attack evolution processes as
paths (cf. Figure 3). The goal of our approach is to also shift the perspective
of detection from the victim to the attacker’s view, relaxing the need for de-
tailed knowledge about the target and making our framework more flexible and
modular by adding more attack graphs to the known set.

Conceptually, the attack graphs designed in this work have structural sim-
ilarities with exploitation-based dependency graphs presented in [52]. The dif-
ference in graph structure is that the focus of our attack graphs is on general
attack actions rather than vulnerabilities and their exploration. Thus, our at-
tack graph design takes into account the attack development process by consid-
ering different types of attack steps depending on the situation and the action
domain. In particular, in addition to meta-information about unique identifiers,
the nodes in our attack graph also contain semantic links to the overall strat-
egy, the attack action represented, and the corresponding kill chain phase of
the step. The structural relationship between nodes and their predecessors and
successors thus represents an attack decision in accordance with an overarching
strategy, followed by the potential impact achieved on the target system or at-
tacker state. Consequently, the edges in our attack graph represent the action
transition considering the connections and participation of host.

For a directed edge from a node with action A to a node with action B, the
possible kinds of host connection are defined in Table 4.

Table 4: Link types between nodes in attack graph.

Link Type Description

Same Origin The host that is involved in action
A is also responsible for B.

Same Target Actions A and B both targeted the
same host.

Extension The host targeted by A continues
to execute action B.

No Overlap No hosts involved in A was involved
in B and vice versa.

Any Overlap The edge is valid independently of
the hosts involved in either action.

Tracing these connections makes it possible to understand the context of an
attacker’s actions without having to know in advance which hosts are present or
connected in the victim’s ICT network. There must also be a neutral starting
point for paths through the attack graph, represented by an initial node that
is added to all attack graphs and contains action and a kill-chain phase, both
of which are called “unidentified” and serve as predecessors for all other nodes
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Figure 3: Exemplary attack graph based on attacker actions for the Havex attack. Edges
represent mass assignments and inference links between actions.
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within the graph. In particular, each edge contains a mass distribution, which
depends on the probability of the connected actions succeeding each other within
the represented attack strategy. The mass distribution is based on a initial mass
ms with the properties ms({t}) = s, ms({f}) = 0 and ms({t, f}) = 1−s, where
0 ≤ s ≤ 1 is a configurable weight to factor in preferable paths in the graph.
In particular, the weighting factor s must be determined for the specific envi-
ronment. To this end, configurable trial runs are used for calibration. Larger
values result in the SC giving too much confidence to the paths, while lower
values result in the belief value values of the paths being too low to be properly
evaluated. Overall, the structural design of the attack graph enables the repre-
sentation of sequential attack processes in terms of paths containing nodes and
edges of the graph. In essence, this consequently forms the attacker’s attack
strategy, which is represented by the attack graph. Thus, focusing the design of
the attack graphs on SGs allows for domain-specific consideration of the attack
campaign. Therefore, an essential part of the SC is the stored attack graphs
that form the knowledge base of the correlator, based on which the analysis is
performed to identify strategies. First, the predefined attack graph is extended
to dynamically account for the current situation by adding new edges that pro-
vide the ability to account for undetected actions or inconsistencies within the
observations. Particularly, the mass distribution depends on the shortest path
length existing between the nodes in question and the masses of the edges along
this shortest path.

Based on the initial preparation, the reconstruction of the potential attack
path is performed in form of paths within the attack graphs, starting with
a chronological listing of the nodes traversed. In addition to the listing, the
mass functions are assigned to the paths considering the mass functions of the
traversed nodes and the involved edges. In this case, the mass functions of the
attack action are set to relatively high uncertainty. Given the additive nature
of Zhang’s central combination rule, this is a necessary step to avoid premature
concentration of high certainty with few observations. Therefore, the mass
distributions of all detected actions must be adjusted to contain a large fraction
of the uncertainty before they can be used for path construction. Specifically,
for each action mass maction, the adjusted action mass ma is calculated with
the following properties:

ma({t}) = maction({t}) ∗ s

ma({f}) = maction({f}) ∗ s

ma({t, f}) = 1− s ∗ |maction({t})−maction({f})|

Thus, the confidence in each action decreases by the same factor, while the
ratio of belief in truth to belief in untruth is preserved. For each known attack
graph, the path construction is initialized with the empty path and all detected
actions are considered in chronological order and possible paths are constructed
iteratively. To prioritize and strategically decide which paths should be further
explored, it is determined which paths should be discarded if extending a path
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would cause its negative belief value to exceed a certain threshold or old paths
that have already been updated with node extension.

As part of the analysis, mass functions are assigned to the attack graphs to
represent the overall confidence level in detecting the correct attack strategy.
Here, the mass functions are part of a “agreement” between the correctly rec-
ognized attack entities attack action, path, and graph, with the intersection of
attack action within the graph and consequently contained path affecting the
mass function value. Based on the mass function distribution, variours checks
are performed to determine whether the attack path with the highest confi-
dence value is included in the attack graph with the highest confidence value
and whether both exceed their respective confidence thresholds. To find the op-
timal pair of path and graph, or if there is a disagreement, it is decided whether
to prioritize the belief value of the graph or the path to still output a plausible
result, otherwise a sufficiently credible pair could not be found. To perform this
optimal result matching, the following procedure is used: All found potentially
traversable paths are sorted by the computed belief values to find the path pb
with the highest belief value Bel({t}), according to the mass assigned to it.
The same procedure is performed for the known attack graphs, where the graph
with the highest belief value is denoted by gb. To be considered as a result of
interest, the discovered attack paths and the corresponding attack graphs need
to fulfill certain confidence levels. Therefore, thresholds for plausibility and be-
lief are introduced. To be considered plausible, the mass distribution mp of a
given attack path p must satisfy the following conditions: Bel({t}) ≥ belp and
Pl({t}) ≥ plp. Accordingly, the mass distribution mg of a given graph g must
satisfy the conditions: Bel({t}) ≥ belg and Pl({t}) ≥ plg. For instance, the
thresholds can be configured as follows to support optimal selection of attack
paths and graph pairs: belg ≥ 0.5, belp = 1

2 · belg, plg = plp, (e.g., belp = 0.3,
plp = 0.9, belg = 0.6, and plg = 0.9). After determining the most credible
attack path pb and graph gb, it has to be checked whether pb passes through
gb or not. If so, they are the most credible available pair of attack paths and
associated graphs. If both gb and pb exceed the corresponding thresholds, they
are considered the most credible feasible solution. If pb exists and gb fails only
at its belief value boundary, the pair is still accepted provided Bel({t}) is the
same for both mass distributions. This is because these circumstances indicate a
path that is credible enough and passes through the most credible graph. It also
means that gb does not exceed its required belief value only because of insuffi-
cient data, since there is no evidence to the contrary. Otherwise, no sufficiently
credible pair of attack graph and path could be found. If the most credible path
is through an attack graph gx 6= gb, a decision must be made whether to use pb
and the (less credible) graph gx or gb and its own most credible path px (which
is less credible than pb). In order for this decision to be made, it is first checked
that both pairs (pb, gx) and (px, gb) satisfy all the limits described earlier. If
one pair fails, the other is taken as the optimal result. If both fail, no suitable
pair could be found, and the process described begins without an optimal path
and graph. If both pairs (pb, gx) and (px, gb) pass all cutoffs, the following tests
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take place:
mgb({f}) > mgx({f})

mgb({t})−mgx({t}) < gdiff

mpb({t})−mpx({t}) > pdiff

where gdiff and pdiff mark the maximum reduction in belief using gx instead
of gb and the minimum gain in belief using pb instead of px, respectively (e.g.,
possible configuration are gdiff = 0.05 and pdiff = 0.2). These tests examine
whether the pair (pb, gx) (with mass distributions mpb and mgx) is sufficiently
more credible and plausible than (gb, px) with mass distributions mgb and mpx .
If at least one of these tests is passed, the pair (pb, gx) is accepted as the optimal
feasible pair of attack graph and path. If not, (gb, px) is used instead. At this
stage, SC completes its analysis and outputs a collection of pairs containing
reconstructed attack paths and associated graphs with the corresponding belief
values for the next component to be considered.

3.5. Kill-Chain Identification

At this stage, the kill-hain identification component is responsible for de-
termining the confidence level of the entire attack and, accordingly, based on
the previous correlation results, identifying the optimal result pair that repre-
sents the attack campaign. Thus, the analysis is primarily based on finding
an optimal pair of attack graphs and paths that are characterized as the most
credible and plausible pair of outcomes according to the mass function values.
In particular, the values of the mass functions are successively compared with
predefined thresholds and limits that represent the minimum confidence level to
be considered a result of interest. Consequently, the corresponding plausibility
and belief values of the attack graph and the path pair constellation are used
for the cutoff process in these comparison tasks.

Using the selected set of pairwise results, it is checked whether the most
credible path is contained in the most credible graph that would form the op-
timal solution. Accordingly, the attack strategy determined in this process is
defined by the attack graph contained in the optimal solution. Thus, the kill-
chain phase of the attack is determined by the phase implications contained in
the path of the optimal solution. The last kill chain phase of the attack node
included in the path represents the current phase the attacker is in.

If no matching pair is found for the optimal solution, the output of the
correlation process depicts either no attack or an attack whose strategy could
not be identified. These two scenarios are distinguished based on the detected
attack and the detected infected hosts, conditional on the cases when either
no hosts were detected as infected or there was not a single access attempt to
an ICT network host detected by the EC, the system concludes that no attack
occurred, otherwise the result is an “unidentified attack”. The final output of
the correlation process consists of the detected attack actions and strategies,
the last perceived kill-chain phase of the attacker, and the list of hosts detected
as infected. Consequently, DOMCA provides results that identifies whether an
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attack occurred within a certain time horizon (defined by the available input and
the assumed relevant correlation of the indicators), the development process of
the attack (determined by the attack path), and the strategy followed (defined
by the attack graph). In addition, the corresponding phase (detected kill chain
phases) and the host involved in the attack (list of infected hosts by attack
actions) are determined.

3.6. Domain-Specific Attribution

In the above sections, the DOMCA framework and methodology are pre-
sented and described, which provides transferability capabilities to other do-
mains due to the modular correlation approach based on the predefined attack
actions and graphs. In particular, the domain-specific mapping for SG is given
by the attack indications that use the SG process network specification such
as SCADA systems, and the attack graphs that include domain-specific attack
targets. For example, lower level IDS sensors may provide DOMCA attack
indications that represent anomalous or suspicious behavior that violates le-
gitimate SG operational specifications and processes (e.g., incorrect addressing
in industry protocol packets, unauthorized communication channels or routes,
unauthorized operations or data points, anomalous data flow, violation of tech-
nical plant specifications, inconsistent measurements). These indications are
obtained by incorporating domain-specific knowledge, such as known legitimate
routes and the topological structure of the network, roles of components and al-
lowed operations, communication structure, and channels, process domain, and
plausibility of measurements and control measures. Combined with event and
strategy correlation, these domain-specific attack indications are mapped to the
appropriate attack levels in the attack graphs. Since the normalized attacks are
mapped to the MITRE ATT&CK attack actions, DOMCA can be easily applied
to other critical infrastructures, with the extension limited only to designing ap-
propriate attack graphs that reflect the attack strategy for the specific target
systems. The resulting domain-specific attack graphs, therefore, include objec-
tives and actions that are specific to the target system and can only be achieved
through observations or attack indications generated exclusively in that environ-
ment (e.g., causing a power imbalance by sending network-damaging setpoint
commands to DER assets). In the context of multi-stage cyber attacks, these
domain-specific attack indications, particularly alarms generated in the process
and field environment, are often generated in the later stages of attack develop-
ment, when it is often too late for potential countermeasures. Therefore, it is
essential to take a holistic view of the entire attack evolution to provide early
detection of the cyber attack campaign, starting with network penetration, lat-
eral movement within the target system, the establishment of the corresponding
C2 overlay network, and tracking of the set targets.

3.7. Post-Processing

The result of DOMCA can be post-processed by an up-streaming component
that provides visualization functions of the output attack campaign with higher-
level processing functions to derive further information (e.g., prediction of next
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steps). When applied to security and situational awareness, streamlining and
visualization can provide easier access to the current situational awareness by
highlighting relevant information from the analysis. In addition, cyber incidents
can be condensed into a format that is understandable to the user and presented
with the appropriate level of confidence, for example, in security centers to re-
spond to potential incidents. Thus, the result could play an important role
in decision-making and deriving appropriate countermeasures to the currently
identified incidents. Specifically, based on the results of the correlation process,
a decision support system can be built to assist the response team during cy-
ber incidents and emergencies by providing action instructions for appropriate
remediation. In particular, by using prediction methods based on the current
situation of the attack.

4. Results & Evaluation

In this section, we present our results and evaluation of the investigation
conducted, which follows in detail the procedure described in Section 4.1, with
evaluation and discussion of the results in Section 4.2. The investigation is based
on a simulation environment of SG that simulates multi-stage cyber attacks
based on real precedence cases (cf. Section 4.2). In particular, we analyze the
accuracy of the detected incidents and the corresponding strategies and evaluate
the influence under different parameters that change the behavior of the ICT
network or the attacker (cf. Section 4.4).

4.1. Procedure for the Investigation

Due to the lack of attack data for multi-stage cyber attacks, which are de-
scribed in more detail in Section 4.5, we chose to simulate attacks based on
previous work in conjunction with the capabilities of simulating multi-stage
cyber attacks for our study. Following a graph-based modeling approach for
smart grid architectures [18], we simulate multi-stage cyber attacks with differ-
ent strategies, some of which are inspired by real cyber incidents such as Havex,
and Stuxnet. Moreover, in addition to the control scenario in which no attack
takes place, we also simulate randomized attackers who randomly perform some
cyber attacks without any specific strategy or pattern. Also, the parameters
used to modify the network simulation and attacker behavior can be varied to
provide more complete insight into the performance of DOMCA under different
circumstances. Within the simulation, we perform various parameter variations
for the network setting, such as the distribution of the existing vulnerabilities,
in which the host configuration with respect to the vulnerability that explicitly
specifies the chance of success of a remote compromise attempt by the attacker
is varied. In addition, the lower-level sensors are also part of the scenario de-
sign, where the coverage is also varied. This is expected to have a significant
impact on the detection quality of DOMCA, especially on the level of observa-
tion available for correlation. In particular, we vary the position of the sensor
near the C2 host. Also, the duration of the entire simulation can be configured,
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measured in discrete integer steps, with longer simulation runs leading to more
evolving attack scenarios and more diverse data generation. We performed a
total of 207 simulation runs as part of the investigation, including 51 runs with
no attack, 52 with an attacker based on Havex, 50 with an attacker based on
Stuxnet, and 54 runs with a randomly acting attacker.

4.2. Attack Modelling and Implementation

Based on the MITRE ATT&CK matrix [64], especially for industrial control
systems [81], and historic cyber security incidents in critical infrastructures [84],
such as Stuxnet, Havex [85] and Industroyer [86], we model the multi-stage cyber
attack scenarios. For each known software involved in cyber attacks, from the
knowledge base formed by the aforementioned sources, the used techniques,
their specific instances and the tactics they belong to can be extracted. To
harmonize this knowledge base with the kill-chain concept, which in its essence
attempts to structure coordinated attacks and divide them into chronological
sections to depict common patterns, we assign the techniques from ATT&CK
to the stages of the kill-chain. It combines the structure of the kill-chain with
the specific attack contents provided by the MITRE ATT&CK matrix, enabling
a more complete view of the attack software. Figure 4 illustrates an example of
modeling the attacker using the Havex example. Hereby, the adversary tactics,
techniques, and procedures of the MITRE ATT&CK matrix are mapped to the
attacker’s kill-chain phases to form our multi-stage attack model.

After structure and content of known attacks have been combined to form
an integrated representation, these attack strategies are abstracted further and
implemented to the simulation environment. For the investigation, we imple-
mented three attack strategies: One based on the Havex software, one based
on the Stuxnet software, and one performing random malicious actions without
following any known pattern. The execution of cyber attack steps is therefore
integrated into the scheduling process of the simulation environment. Each time
a simulation step is executed, the cyber attacker proceeds with its sequence of
actions. With the cyber attacker running synchronously with the environment
simulation, it is possible to communicate between infected hosts and send pack-
ets within the general communication scheme of the simulation. The goal if
the attacker is to use client-server communication to send messages and com-
mands from a C2 server to infected hosts within the target’s ICT network. Since
not all nodes are connected to all other nodes of the communication network,
messages between a host and the C2 server are relayed through other infected
intermediate hosts.

The C2 server in our implementation has a complete control over the infected
hosts and is able to decide what the next action of each one should be. The
attacker’s C2 server is responsible for gathering information about the environ-
ment and distributing instructions to the malware running on victim hosts. In
the simulation, we initialize the C2 server that is able to communicate via the
target’s ICT network of the simulated system.

29



Figure 4: Illustration of the attacker modeling approach using the Havex example. The upper
right corner shows the propagation of the modeled attack in the simulation environment.
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4.3. Evaluation Criteria

The evaluation of the proposed DOMCA’s performance is based on crite-
ria that provide insight into the system’s capabilities by measuring its ability to
correctly identify the infected hosts within the ICT network or the attacker’s ex-
ecuted actions. Besides, the criteria determine whether the system can correctly
identify a known attack strategy and the phase of the kill-chain that is currently
being executed within it. Thus, there are four main criteria for evaluating the
performance of our attack detection approach:

(1) detection of compromised hosts in the network
(2) confidence level of detected attacker actions
(3) confidence level of detected attacker strategy
(4) identification of the current phase in the kill-chain (attacker’s progress)

The first two criteria are intermediate results, which are used to evaluate
DOMCA’s detection capabilities. They examine the system’s ability to correctly
identify the infected hosts within the ICT network, and the attacker’s executed
actions respectively. The second and third criteria are used for determining
whether DOMCA is capable of correctly identifying a known attack strategy
and the phase of the kill-chain currently being executed within it.

Performing network analysis, DOMCA detects which hosts within the simu-
lated ICT network are likely compromised by an attacker. The resulting list is
compared to the attacker’s own list of actually infected hosts, and the overlap
stored in percent.

DOMCA also determines the actions taken by an attacker in chronological
order. Each action is assigned a mass, storing plausibility and belief in it. The
list of actions with a plausibility larger than the predefined threshold value is
compared to the attacker’s own list of executed actions, and the overlap stored
in percent.

One of the relevant goals of DOMCA is to correctly identify an attack follow-
ing a known strategy. DOMCA has a pool of known attack graphs that it can
identify. Two of these attack graphs (the Havex-based and the Stuxnet-based
attacker) are executed attacks that occur during the simulation. Two more
attack graphs (communication-dependent and removable media attackers) are
available to DOMCA to detect, but are not implemented and therefore will not
occur within the simulation. Additionally, the randomized attacker is imple-
mented within the environment and does not follow any known strategy. In this
case, the system should detect that there is an attacker present, and that it does
not conform to any predefined attack graph. The output “unidentified attack”
is considered correct when a randomized attacker was present. Also, there exists
the chance that the randomized attacker will replicate a known attack strategy.
If DOMCA then attributes the attack to that strategy, its detection is consid-
ered incorrect. Finally, it is possible that there is no cyber attacker present
in the ICT network at all. Therefore, an output of ”no attack” is considered
correct in this case.

Lastly, in our investigation, we also evaluate the identification of the kill-
chain phase of an attacker. kill-chain phase identification is therefore evaluated
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Figure 5: The classification accuracy assessment chart shows the attack scenarios performed
on the x-axis, including the “no attack” event, and on the y-axis the distribution of the
detection rate of attack strategies, kill-chain phases, and the influence of sensor placement on
detection quality.

as correctly, if the mapped kill-chain phases correspond to the actual executed
phases of the attacker within the simulation.

4.4. Evaluation of the Accuracy of Classification

The results of our investigation are presented in Figure 5, which depicts the
detection quality of DOMCA in different attack scenarios that differ in terms
of detected attack, strategy, and kill chain step. To investigate the influence
of sensors, we also considered the effect of sensor placement on detection qual-
ity within the plot in terms of the average influence rate. Key observation in
the research is that no false alarms were detected during the simulated attack
scenarios, indicating in particular that, with high accuracy, no alerts are issued
when no attack is present. The detection rate of the existing attack scenarios
was also remarkably high, with a detection rate of 87.86%.

Furthermore, in Figure 6 we plotted the detection rate in dependence of
the simulation duration of each simulated scenario. The detection rate over all
scenarios plotted on the y-axis represents the aggregated detection rates over
each simulation sorted by the duration of the simulation runs. Thus, the plot
depicts the evolution of the detection rate across the scenarios with increasing
duration of the simulations to determine the impact of duration on the detection
rate. As the figure shows, there is a trend towards an increasing detection
rate across all scenarios, both for the correctly detected strategy and for the
correct kill chain phases, based on an extended simulation time. Since a longer
duration of attack scenarios also means potentially more observations that can
be received via the deployed sensors, DOMCA has more information to detect
the attack. Moreover, Figure 7 indicates, that we can observe the same effect
for each scenario depending on the sensor placement and independent of the
chosen attack strategy. In addition to observing the same effect of increasing
duration on detection rate, we can also observe the influence of sensor placement
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Figure 6: The classification accuracy assessment chart shows the simulation duration of each
simulated scenarios on the x-axis, and on the y-axis the distribution of the detection rate of
attack strategies, and kill-chain phases over all simulated scenarios.

independent of duration. It is clear that the placement of the sensors relative
to the C2 server also has an impact on the detection rate. The experiments
show that a sensor placed near the C2 server improves the detection rate of
DOMCA. In addition, in Figure 8, the step size at which the attack model
executes its actions is varied to also examine the effects of step size on the
detection rate. For better comparison, the detection rate of the experiment is
normalized to compare the variation in detection rate for each step size varied
for an attack-induced and a non-attack-induced scenario. The results indicate
that no significant effect of step size on the detection rate is observed in the
attack-induced and non-attack-induced scenarios, as well as in the aggregated
case. This result shows that DOMCA does not depend on the anomaly rate of
attack signatures compared to normal traffic. Moreover, it implies that DOMCA
can reliably distinguish between attacks and non-attacks even in imbalanced
datasets.

Including data from all 207 simulation runs, the distribution of the actual at-
tack strategies with respect to the attack pattern determined by the system can
be obtained from Figure 5). For example, when DOMCA issued the “No Attack”
result, it was correct in 72.86% of all cases evaluated. When DOMCA yielded
the result “Havex attack”, this was correct in 50.86% of the cases. Moreover,
our results show that correct distinction between normal and attack-induced
situation is reliably detected, even if an attack is mostly identified as “uniden-
tified” attack situation when no matching attack graph could be found. This
means that the system detected that an attacker was present, but could not
assign a known strategy with sufficient confidence.

In a “randomized” attack, where random attack actions are performed, the
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Figure 7: Granular representation of the trend curve of each simulated scenario as a function
of the detection rate across the simulated scenarios. In addition, the detection rate curve is
differentiated by the type of sensor placement: “Sensor on” represents sensor placement near
the C2 server and “Sensor off” represents the opposite case.

Figure 8: Illustration of the distribution of the detection rate at different step sizes of the
simulation runs. The x-axis represents attack-induced and no attack scenarios, which are
additionally aggregated to an overall case.
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attack is still detected in the vast majority of cases. However, it is often in-
correctly assigned to a known attack graph. Still, the most common conclusion
the system draws is an “unidentified” attack is correct. When varying sensor
placement, we observed that the detection accuracy of each known attack graph
was up to 36 percentage points higher when such a sensor was placed near a C2
host but showed little impact on the correct detection of an unknown/random
attack. With a sensor, detection becomes more accurate because more data is
available and the C2 node in our scenarios plays a central role in many of the
attacker’s activities and thus has significantly more influence on detection qual-
ity due to sensor placement. The results regarding the correct determination of
the last kill-chain phase of an attacker show a detection accuracy of 56.38% for
different kill-chain phases for all attack strategies.

The reliability of kill-chain identification is highly dependent on the correct
identification of the attack strategy. When a known attack graph was correctly
identified, the kill-chain phase was also correctly determined in over 97% of the
cases. If the attack strategy is not correctly detected, the corresponding kill-
chain detection is less reliable and is correctly detected at a rate of 14%. We also
observed that the detection rate of the different attack strategies depends on
the simulation duration, with the false-negative rate decreasing as the duration
of the simulated scenario increases. This is because DOMCA has more data
that allows a more reliable identification of an attacker and the corresponding
attack strategy.

4.5. Qualitative Comparison with Other Systems

In this section, we perform a comparison of DOMCA with other similar
systems to highlight the different features of the detection process and quality.
However, the comparison is made on a qualitative basis for several reasons. A
key component of our performance analysis in Section 4.4 is the simulated attack
data described in Section 4.2, which represents a multi-stage cyber attack in SG.
Due to the lack and deficiency of data on multi-stage cyber attacks, in which
not only attack vectors but logically bound sequences of multiple attack vectors
are mapped to form kill-chain related attack sequences, a basis for scientific
comparison of different detection methods is not yet available to our knowledge.
To address this problem, we have developed a simulation environment capable
of simulating multi-stage cyber attacks that meet the requirement of forming a
complex chain of attack actions with well-defined targets following an overar-
ching strategy. Apart from the critical situation of missing benchmark datasets
for multi-stage cyber attacks, the procedure for simulating or synthetically gen-
erating the missing datasets is also different in the different approaches and does
not follow a standardized process. This also presents a challenge for comparing
different approaches using synthetic datasets that meet a wide range of criteria
for different approaches. With the focus on SG, the target system as the ba-
sis for attack simulation may also diverge, e.g., our simulation environment is
tailored to SG in the European region, which differs from U.S. grids already by
the communication protocols used (e.g., IEC 60870 vs. DNP3). Moreover, the
results or expected outcomes differ between the different approaches, with our
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approach DOMCA aiming not only to detect attacks, but also to determine the
corresponding attack actions, strategy, and development process based on the
kill chain concept. Consequently, for a systematic and standardized compari-
son of different approaches, we see the current challenge of providing an existing
benchmark dataset that includes the required attack data for different detection
approaches in a standardized form that meets the requirements of multi-stage
characteristics and common cyber-physical system environment. Nevertheless,
at least on the basis of the following characteristics, we try to make a comparison
with other similar systems and present the result in the Table 5:

- Method: the method used for the correlation approach

- Dataset: the dataset used for the evaluation that is presented in the reference

- Input Types: type of expected input data for the correlation approach

- Attack action (Aa): capabilities of the proposed approach to detect involved
attack actions in the attack scenario

- Attack path (Ap): capabilities of the proposed approach to detect the attack
development process in the attack scenario

- Attack strategy (As): capabilities of the proposed approach to detect the
attack strategy in the attack scenario

Table 5: Qualitative comparison between DOMCA and other systems.

Reference Method Dataset Input Types Aa Ap As

[87] Attribute Matching Case Study IDS Data - X -
[88] Attribute Correla-

tion
DARPA 2000 IDS Alerts X - X

[89] Scenario Clustering Private IDS Alerts - X X
[90] Statistical Analysis Private Logging Data X - -
[91] Pre-/Post-Condition

Analysis
DARPA 2000 IDS Alerts - X -

[92] Model Matching
Analysis

DARPA 2000 IDS Alerts - X -

[93] Statistical Inference
Analysis

DARPA 2000 IDS Alerts - X -

[94] Structural-based
Analysis

Case study IDS Alerts - - X

[95] Mixed DARPA 2000 IDS Data - X X
DOMCA Mixed Simulated IDS, IT & OT

Data
X X X

In the qualitative comparison, it is noticeable that DOMCA differs from the
other approaches primarily in the degree of output. While other systems also
aim to detect multi-stage cyber attacks, the output of their correlation includes
the sequential attack process or attack graph, but not combined the strategy
involved in the attack process and development. In addition, the approaches of-
ten do not distinguish the individual phases within the attack process according
to established structural concepts such as the kill chain. This is also observable
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for the attack actions involved in the attack campaign, which do not refer to
established definitions such as those of MITRE ATT&CK. The types of input
in the correlation approach also differ with regards to the different source types
such as IDS or Logging data. Many approaches rely on traditional IDS alerts
processed in the correlation approach to detect the attack within the communi-
cation layer. Depending on the method of the approaches, different data sources
become more interesting than others, and the level of information in the results
can potentially suffer from heterogeneous data. In addition to the divergent
data basis for evaluation, it is clear that a missing standardized understanding
of the results with regards to established concepts and definitions makes the
comparison with DOMCA difficult.

5. Discussion

In Section 4, we analyzed and evaluated our proposed approach DOMCA
against different attack scenarios in which DOMCA could reliably detect the
presence of the attack, but also the corresponding strategy as well as the kill-
chain phases. Since our approach uses dynamic security-related information
such as logs and alarms from IDS sensors, we also observed a strong depen-
dency of the detection rate on sensor placement in our experiments. It has been
observed that placing sensors near the C2 server increases the detection rate of
DOMCA by providing additional information about the C2 communication that
characterizes most of our attack scenarios. Moreover, our approach is designed
to enable situational awareness through contextual correlation of available in-
formation such as alarms from IDS. Thus, it is within expectations that as
the information base decreases, the detection rate also decreases. Subsequently,
sensor placement as well as the duration of attack scenarios contribute signif-
icantly to the accuracy of detection of attack strategies and kill-chain phases.
In particular, the presence of a sensor monitoring communication with an C2
host contributes significantly to the accuracy of detecting the strategy used
by an attacker in our experiments. However, our approach does not represent
a learning-based system where a predefined data set is required to train the
model for detection using, e.g., anomaly-based or signature-based detection.
Rather, our approach uses heterogeneous information via stochastic inference
and model-based correlation for its detection mechanism. The impact of de-
creasing information on detection quality is limited by increasing uncertainty
within security-related information such as alerts. Since we handle the un-
certainty with the DST, the detection rate does not decrease as much due to
insufficient information because the observation is robustly handled by the ad-
justed combination rules. However, less information still leads to a higher range
of uncertainty within our evidence, potentially leading to lower belief values and
thus lower confidence in the detection of the strategy. This can lead to an attack
being detected in the early stages but not correctly mapped to a known attack
graph. Here, we observed that the effect of a more universal kill-chain phase,
independent of a particular strategy, benefited DOMCA in the initial early de-
tection. However, misrecognized strategies result in a lower rate of detected
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kill-chain phases because the context of the attack is missing from the attack
graph. Furthermore, the qualitative comparison between DOMCA and the other
systems in Section 4.5 also illustrates the result quality of DOMCA. Compared
to the other approaches, DOMCA is able to identify the involved attack actions,
attack evolution and strategy, which are also linked to well-established concepts
and definitions such as the kill chain concept and the MITRE ATT&CK ma-
trix. The ability to incorporate more diverse data, such as IT and OT-related
data, also allows richer output information to be obtained compared to systems
that rely solely on traditional communications data. Overall, the results show
that DOMCA can be used for reliable detection of multi-stage cyber attacks in
SGs. Depending on the observable network area and prior knowledge of attack
actions and strategies, reliable detection of the attacker’s strategy and current
position in the kill-chain are also possible and provide an advanced basis for
attack prediction and defense.

6. Conclusion

In light of emerging challenges in mitigating cyber attacks in the IT and OT
landscape, reactive mitigation and countermeasures require accurate and situ-
ationally descriptive attack campaign detection capabilities. In particular, this
requires an understanding of the attack development process not only in terms
of communication-dependent processes. This form of situational awareness re-
quires further insight into the evolution of the attack, the quality of the infor-
mation gathered, the impact of the attack on critical assets, the behavior of the
attacker during an incident, and possible future developments. Subsequently,
an advanced information base can be provided for the preparation, selection,
and execution of appropriate mitigation, countermeasure, and recovery plans.

To this end, in this paper, we introduce the DOMCA correlation approach,
which is designed to identify the cyber security posture within SG in the con-
text of multi-stage cyber attacks. In this paper, we provide insights into the
design of DOMCA, specifically the core event and strategy correlator compo-
nent, followed by the kill-chain identification component. In addition, we also
investigate the detection quality of DOMCA under different cyber threat sce-
narios. This allows us to investigate the validity of the results associated with
the simulation data used and to identify challenges related to the partitioning
of an attacker’s operations through the kill-chain.

During our research, we were able to show that DOMCA can reliably de-
tect multi-stage cyber attacks that follow specific strategies in terms of their
actions, evolution, and phases. In alignment with our expectation, we were also
able to confirm the dependence on sensor placement and its influence on the
detection quality of DOMCA, especially the kill-chain phase and the identifica-
tion of the attack strategy. Due to the modular nature of attack actions and
graphs, DOMCA can be extended beyond the demonstrated use case in SGs
by incorporating domain-specific attack actions and strategies. In future work,
DOMCA can be tested with a wider range of known attack actions and graphs,
as well as with a new attack model to structure cyber attacks from the target’s
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perspective and to distribute an attacker’s operations more evenly across the
target’s ICT network. Overall, our research indicates that DOMCA can reliably
reconstruct complex attack campaigns, with reliable detection of the evolution
and strategy, provided that a sufficient information base is available. Thus, the
result of DOMCA provides an advanced foundation for further research toward
decision support system and automated response to cyber attacks.
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